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Summary

,

This report presents a theorrof eye Movement that accounts for
4as

main features of the stochastic behavior of eye-fixation durations and

direction of movement of saccades in the process of solving arithmetic

exercises Of addition'and subtraction. The best-fitting distribution of

s

fixation dyrations with a relatively simple theoretical justification

consists of a mixture of an exponential distribution and the convolttion

4of two exponential distributions. The eye movements themselves were found

to approximate a random walk that fit rather closely in both adult and

,juvenile subjects the motion postulated by the normative.-algorithm

ordinarily taught in schools. Certain structuralafeatures of addition and

subtraction exercises, such as the number.of columns, the presence or
I.

absence of a carry of a'borrow, are well known to affect theirsdifficulty.

) In our study, regressions on such structural variables were found to account

for only a relatively small part of the variation in eye-fixation durations-

.
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1 Introduction and Theoretical Background

sSince the second decide of this. century there has been a large,

nurser of empirical studies, many 'excellent, of st }ldent performance in

arithmetic. A fairly systematic review of this early' literature is to

be found in Suppes; Jerman, and. Brian (1968). More,tecently, linear

regression models thatKuse the structural features of the arithmetic

exercises as independent variables have bee shown o fit the data of

responses or o re onse latencies rather we (see Suppes and Morningstar,

11972, for extensive experimental data and references to previous literature.

The move frorahe structural regression models to process models that are

`finite -state automata is relatively 'straightforWard. From a certain fOrmal

.

standpoint: automaton models. are algorithriica1 sufficient to the task.-

They provide a process analysis o the steps to solve the standard
'

A

2exercises (see Suppes, 1969, for theoretical development of'such

automatom_models; see Suppes and Morningstar, 1972, Chapter 5,, for the fit

to data). The automaton models'are, however, at too abstract a level to.

a
be fully satisfactory from a psychological standpoint, even though they,

are mathematically satisfactory as algorithms.

The next step beyond automaton models in the line Of research

reported here is to introduce schematic concepts of perceptual processing,. ve

'41

Because the theOry-tehihd register machines with perceptual instructions

9,
is'a discrete version of the stochastic and continuous model involving eye

movements that we consider later, we turn to some of the details of these

models, which were first proposed in Suppes. (1973).

It

a
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First of all, 'we emphasize agatn the importande ..of a pereeptda4

component. Wi6loutNsuch a comf3onent,we have rho way of representing the

mentaroprotions a pep,on actually tises to process the written symbols

presented to him. It is also apparent, on the other, hand, that the full

theory of how this processing takes.place is a topicoT unbounded

complexity. We will necessarily provide a treatment at a certain level of

abstraction but one that is closer,to the concrdte and complex aspects of

the actual perceptual situation than is that of the automaton models.

Register machines as such were first introduced by Shepherdson anci

Sturgis (1963) in order to give a natural representation of computable

fulictions. The representation is more intuitive than that of Turing

,machines b cause the central idea is close to that of a standard co?nputer

accepting instructions. For the representation of computable functions, a

rather small set of arithmetic instructions is sufficient. In particular,

anunlimited register machine has a denumerable sequence of registers, but

any given program only uses a finite numbe,..of these.registers. The
. ,

. -

, Shepherdson and Sturgis machine, accepts six basic instructions: add one to
t

a register, subtract one, cleara register, copy from one register to

another, .and two jump instructions, one*conditionai°and one not,4It'is

apparenevtbap this set of instructions is not minimal; the exact choic2.0,,

. -
is more or less a matter of convenience.)

,

To model the processing that a petson does, we want a different

t-fit register machine, of course, acid a quite dieferent set of instructions.
1k

A In pdrticular, we want instructions that 4ect the perceptual situation.'
, '

It is also reasonable to assume that only a fixed finipenumber of

I

registers are used in the relatively simple .taska we consider-
-

1
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We can drastically simplify thR perceptual situation by conceiving

1

of each exercise, for example, an exercise in column addition, as being

0-
presented on a grid with at most one symbol in each cell of the grid. The

pefson Aoing exercises.is represented by a model that has instructions, for

attending to a specified"cell; 'for example, in the standard algorithms of

additibn, subtraction,. and multipl ation 1...s most of us were taught to begin

at the tipper right-hand corner and to move downward through'each column and

from right to left across columns. We shall discuss the de'tailed set of

instructions in a moment. The basic idea of such register-machine models'

is that the different algorithms of arithmetic are represented by

subroutines. One subroutine may be called in another as complex routings

or.progpms are built up. For instance, the routine for column

multiplication uses as a subroutine the program for column addition.

To have a psychologically realistic model at this level, the°

problem is.to find a representation that is not only adequate as an

algorithm but that also can be fitted to detailed eye-movement data in the

'same way that the li 'hear regreAion models or the automaton models

mentioned earlier have been applied to response and latency data.

1.1 Register-machine Model for One-column Addition

To avoid some complexities that we need to 6snsider'later ±11 terms

of the actual experiments we performed, we consider inierdify the simple

case of one -column addition. Ceptrary to the usual CArtesian convention,

.we number.the coordinates of the grid on which we think of symbols being

presented from the upper right-hand corner. Thus,,in the addition exercise
1

\6
3

,
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1' the coordinates of the digit 6 are (1,1), the coordinates of 3 are (20..),

'and the co rdinates of 9 are ,(3,1), with the first coordiriate being the row

number and the second being the column number (the column number is needed

for the ge eral case).

Ird formulating instructions we need for column addition, the
0

I

following notation, is used: (a,6) is the pair of coordinates of.a grid

position with a and b being positive integdrs; (4-a, 413) shows
. .

,amount of shift in each coordinate from one gfid position to another;

ER], ER
1

1-1(1 [R2I are'variahled for registers; [SS] is the fixed

register that is stimulus supported; [14SS] is a fixed register that is

nonstimulus supported. These are the instructions:

4

Attend (a,b): Direct, attention to grid position (.12).

(4-a, 413): Shift attention on the grid by (4-a, +W.

Readin [SS]: Read into the stimulus-supported register the

yisual symbol in the grid position addressed
40

J

a,

by Attend.

Lookup [R1] 4: [R2]: Look up table of basic addition facts for adding

contents of registers JR1] and (R12] and store the

.
result in [R1].

Copy [R1] in [R2]: Copy the content of register [R1] 'into register [R2].

Jump (val) R,L: Jump to line labeled L if content of register (R]

is val-

Outright [R]: Write (output) the rightmost symbol of register

[R] at grid position addressed by Attend-

beleteright [R]: Delete the rightmost symbol of registei [R].

find: Terminate processing of currenturrent exercise-
,

O
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Of these instructions, only Lookup does not have an elementAry CharaCter-
i

In a more complete analysis,;it would ave the status of'a Subroutine-built
a

up; from more primiti e operations suc as thOse of counting. It isT7of

course, more thin a problem of core tructing Stie table of basid addition

s

facts from countin sublioutines; it is also a natter of being able to-add

a single digit to'any number stored in the nonstimulus-supported register'

RISS), as, for exiimple, in adding many rows of digits in a given column.,

We omit the detail5, of building up this subroutine. It should also 1e

obvious that the remaining instructions do not constitute a minimal'set-
.,

For the simple case of one-column addition, we need only two

registers;
,
one, (SS), is stimulus-supported; the other, (NSS),.is ot.

-program representin# a p-tocedure close to what is taught in schools for

doing one-column addition is shown in the left-hand column of Table 1

A restriction is that -the sum b4 equal to or less than 99. By adding

probabilistic parapeters td various segmeqts of the program, response

performance models are easily generated. The more complex routines required

for ge7ral addition and subtraction exercises, are given in Appendix C.

Because it is doubtful that a young student could be taught'

routines stated in terms of the assembly language we use in our set of

instructions, in the right-hand column of Table 1
4
we have written down an

.1 .

4

English version of the program and have called the various commands En lish-

addressa'ble subroutines (for an amplification of tlii,e'Point, see Suppes,

1980). It 4.1s. not our intention here, to enter into_those'aspects tf, learning

.
for which the ,English-addressable subroutines are nearly essential. We do

think that a very sensible and reasonable cognitive theory of learning for

such procedures can be formulated by using such subroutines, but in the
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present report we shall restrict ourselves to performance models and'shall

not consider in any systematic way tow .the performance models have be7

'learned.'

p

r.

.40

'1

.1e

a

-.?

44,

,
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table.1

Example if One column Addi ion
-for Sum.;,<.<> 99

Pseudo assembly--
language pro0-am.

English addressable
sub utines

Attend (1,1) t Look at .t is number..

.

Readin

Copy.SS.in, NSS Re5ember th number.

Attend (+1,40) Now look at 'this next

Readin number.

Opr Lookup USS + SS Add the two numbers and

remember the sum.

Attend (+1,40), Move down the column-

)T ,

Keadin If there is 'another number,

Jump (0-9) SS, Opr add `as before and Continue-
,

Attend'(+1,4-0) L Ienot, move'down to the

Outright NSS

Deleteright NSS

blank space.

1Yrite down the number of

ones iri the answer.

.

Attend (4-00-1) Now look at'the,spacqdto

.

-, the-4.4ti. 'i, -,,

Outright NSS ._ _ Write 4

'ie,Pb.

' Deleteright

End
.

. .

answer; (unress

is zero),',

!

t
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1.2 Normative Versus Actual Perfbrtande f,

o
. At the level of the register-machine models discussed aboye and as

f 1 (

exemplified in Table 1 and Appendix C, we have-a clear cOncepttof the ,.

. .

normative b ehavior, that every good eacher arms at- the elementary school.
. .. 0

, .

, ,
, .

Students first learn subroutines of
F

the kind we have been discussing and
"

. . #
then they are expected to work standard exercised with few, ifoany, errors.

r--

We think of such accuracy as-characteristic of the normative model"- Of4,
4

* _

course, we do not have such clear ideas about, the response latencies to be--
,,,

::',.
.-...<---

' expected but there are qualitative narms , implicit in classroom practice,
.

- ,
. ...., .

. ..
,

about working at an acceptable speed. The empiridal and experimental

arithmeticstudies of arithmetic mentioned earlier focus on actual performance and how
/

' ,it deviates from normative standards.

The situationis very diflerent once we introduce eye movements.

There is no obvious-or natural concept of normative eye movements and as

AT as we-know there has been no.discussion in the literature of what one

would take to be appropriate'eye movements as a real-time process on the

part of children or adults. :We return to say something.about such normative .

behavior late'r, one of the reasons being that we have considerable data

. -

from skilled adults, but our main concern is,the following-

\
o 4

1-3 Stochastic Theory of Eye Movements
V

To move toward a much more detailed theory of how programs of, the

kind ekemplified in Table 1 are actually executed we. move now to theory and

data on eye movements. We expect a strong correlation between the point of

regatd and the current step in a procedure that is being executed. We

recognize there are many exceptions to this claim, for example, when

someone looks off into the distance while recalling some past event or

4

*4
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plan ning some future activity. .But there are just-as many cases in which

this is obviously not so and the point of regard in the field of visual

.perception is an obvious clue to what is'being processed internally. In

this particular we are advancing the view that the point of regard within

the displayed arithmetic.exercise, taten in conjunction with a knowledge of
0

-

the algorithm which the subject hasqeen instructed to execute, provides

.,,animpartant whAt covert mental operations the subject is
C

perfAming and where he is at,thatlmment in the arithmetic algorithm..

We torn how to the firt simple' version of our. stochastic theory

of eye movements., It is to be understood that the theory is formulated for
.

the context of performing algorithmic task6 tepreseAfed by subroutines such

as shown'Tin-table lf' Perhaps the conceptual point of widest' psycho'
'*#

. . $.'
interest is the contrast between the stochastic theory of human behavior

at the level of eye movements and the e0sentially'deterministic theory of

algorithmic prOcehink in standard compuiersystems. It is possible to

build stochastic features into standard computers but it is seldomdone

except for purposes of simulation, whereas such features area fundamental

asnfett, in our judgment, of human execution of procedures. 'This highly

stochastic aspect of human performance has not been adequately incorporated
',.,

into curreiitotiitive theories of behavio but is widely recognized in
. -,.. , .. s

.

1;.' tile literatpre'ori eye movements (Ditchburn 1901). )..

'tg-.-k
i

f°Our simple stochastic theory of eye moVements falls naturaltk into.

.-,

two pafg: 'Tht first part is the simple qualitative axiom governing the'

(filiation of Afixatibn. We Comment later on its Iorsychological significance.
.'''

, .
,

movements-second Asibup of axioms has to-do with the direction of eye movements-
, ).

In thee present context we think of the direction of movement as constituting

1.0
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a random walk, with the frame of reference of the steps being the cognitive

grid defined earlier as implicit in the perception of the stimulus:display's

of arkthmetic exercises. The most gltortant randomwalk movement is going
C

to the next displayed symbol: We call this the forward jump, because

it represents progress in the algorithmic sequence. The secon'd

significant movement is thattof staying within a given s on the grid.

'We'Call this the stayput movement, which is similar to the concept 'of gaze

in Just and Carpenter (1980). Notice tbat the point of regard is not

literally 'staying put' at the leveliof resolution of, the eyetracking

Apparatus but rather,is.doing so 'in terms of the largescale g id an which

stimuli are displayld. The point of regard stays within the same 'square of
-

the grid, i.e., stays focused,ohapproximately the same displayed symbol.

The third type-of movement is that of backtracking, Which' is the opposite

of,forvard movement. It is to 13e toted that backtracking as such will 'not

occur in the normative discrete routines as exemplified in Table 1 or
,

Appendix C.

1.4 Model I

, .

The first axiom, Fl,' is inconditional in character about the length

of fiction, showing that the sense of a'contlitional action is not needed-

. Simple Axiqm of Fixation

Fl. The length 40fixation is independent of past (cognitive)

processing and the present stimulus context.

It follows'at once from this axiom by standard probabilistic arguments that

the distribut of fixation len/ths is exponential. What is important

from a psychological standpoint is that ewe axiomimplies at the length
..

of fiXationis a' process without. What the organism is currently

I

0
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doing or'what th.6 organise has recent1y been doing has no effect at all on
i

the length of. fixation. This is a very Strong, independence assumption and

we shall want to examine in detail the ,'extent towhich it is satisfied by

our data.
dp,

0,
Axioms on Direction of Movement

.D1. If processing is complete at a given point of regard, then m

to the next stimulus symbol-_
DZ. If .processing at a given point of°regard is not complete and

nonstiMulus-supported memory has not decayed, stayput on present

stimulus symbol. r

D3. If prt;ZessinR at the present point of regard is not complete
, .

and nonstimulbs-supported memory has decayed, backtrack to the

beginning of the exercise

It is apparent how these three axioms are tied to the use of the nonatithulus

44,A)port registers described earlier and exemplified in the routine shown in
N

Table 1. ,For some of the more complicated alzorithmswe consider (see

Appendix C), it Is not sufficient to have simply the tuo
.
registers referred

to in Table 1 'but it,is necessary to have several, and what we say in these

vk
.
axioms about,nonstimulus-supported memory is m t to apply to any of the

4 4,

registers that is not stimulus-supported I

We emphasize that Model I is me to be a natural expansion of the
.

discrete register-machine model, of which a simple example has been given

in Table 1. The axiom on fixation times and the axioms on direction of

movement define its a natural way a simple continuous-time proce The

4 -

ranAom walk that is part Of this process is a little unusual because of the

strong backtracking assumption but the axioms taken together do define what

4

Ns
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seems to be the obvious continuous-time Markov process to add eye-movement
0

4 phenomena to thetoriginal register-machine model.

1.5 Model II

As we shall see in the data presented below, there are at least

four major respects in which Model I is too simple. First, the

distribution of fixation times is not exponential, which'means that-the

process is not completely without memory. Furthermore, if we reflect on t'is

Problem it is evident that even.;Erom a physical standpoint we would expect

smite kind of inertial yct.th would prohibit the process from being

strictly exponential,. Second, the backtracking axiom is certainly too

simple in formulation. At we shall see, the backtracking observed in-our
(

subjects is only'one or two grid spaces back and seldom a full backtrack to

the beginning of the exercise. The implication of this t§. strong for the

formulation of the register-machine model. It means that the number of
4

registers used,)fe,r example in addition or subtraction, must be increased,_

in order to store partial results, or the character of th registers must

6 /
be changId. These two approaches, as can easily be seen, are formally

equivalent. Third, there is good evidence in the data that a certain

percentagesOf the time a square on the grid is skipped. This skipping

phenomenon may be accounted for by the subject's being able to identify at

one point of regard more than one stimulus symbol. We shall not enter

here into the, question of whether or not it is accomplished by peripheral

.vision; but the skipping phenomenon is certainly present and needs to be

incorporated into an adequate theoretical model. Fourth, there are

instances in which the algorithmic routine has nv been followed, and

backtracking hasnot occurred. In the extended random walk of Model II, we

a /
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1

f

cal4this s ep other' It might be thought,that any movements like other outside

the theory are be regarded as evidence against the,theory but we tee it

that with something as stochastic and irregular as-eye movements we cad'

scarcely expect to have a completely detailed of the movement, and

we need this,categdry to describe fully the eye motion. .It must be

admitted that from a theoretical 'standpoint we still haye a rather poor

understanding of how to think about these 'other' ,movements.

We take these four Points into consideration in revising the axioms

of Model I to characterize Model II. First, in the case of fixation duration

we assume that a fixation'is exponentially distributed when a single
f4,

instruction is being exfcuted internally and is. the convolution of n

exponentials (with the same parameter) when n internal instructions are

bein g executed during that fixatiOn. (These internal instrctipns are

thoUght of as controlling eye movement in fine detail, and are not the

kind of instructions used in Table 1) In the data analysis presented

later we lE.onsider only the case of n = 2, but It is evident that we could

obtain a better fit by increasing n. The concept of the number of 400Vs.

instructions being executed internally is a theoretical one, since we can r-
,.

.
.. , .

make no direct observation of n Those who o not like. this concept of en

instruction being executed can easily supply an elternative, more

phenomenological; formulation.

Mixture Axioms on'Fxecution Time

Fl. The execution of each eye-control instruction is

independent of past processing and the present stimulus context-
4

F2. Each fixation lasts,for the execution of n internal

'
instructions, for n = 1, 2,

es

es,
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A

.These two axioms are too weakby themselves to imply an interesting

parametric form for the distribution -of fixation durations. For the

pirposes of present application to our data, we specialize to .n = 1 or
.

n = 2.

executIons,;we ver>7qit'to be different than that for one. Given a as the-

mixture perimeter for the ex onential distribution with mean -XI And

A2 as the mean_of the convolution of two expopentials, the distribution

4 A

Mpreover, the exponential parameter for
/
theiconvolutiori-of two

a.

of fixation durations for Model II has the following form:

f(t) = e-t/A1 a)te-t/),2

A2 ,

We now turn to the revision of the axioms on the direction .of eye

movement. The most Important revision is in the axiom,regarding backtracking.

The simple normative:model is almost never e2chibitediin the data, i.e.,-
. s

there was a vanishing small probability of backtracking to the origin point

of the grid, except in the"case when the subject was in the first column

and this was covered'by the classification given below. Most of the

backtracking twas onlp to the preceding,iow in the same column. We therefore

postulate tat backtrapking is only to the preceding row or at most to the

beginning of the column, i.e., to the top of the columfi. Of course, In

subtraction exercises these two forms of backtrackii are identical and they-

,

are
(

also identical in many forms'of addition. We take account of this fact

in the data analysis given later. We also add an axiom to take account of
-Akr1/2g,

skipping,, which can scarcely be regarded as a deviation from execution of

the algorithm but represents a feature not represented in Model I. It

should be mentioned at except with negligible probability the skipping
o

always involved just one square of the grid, i.e"eordinarfly one symbol-

(

J.
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Revised Axioms on Direction of Movement

Axioms Dl and D2 remain unchanged-
}

4

Axiom D3' ,If processing at the present point of regard is not

complete and nonstimulussupported memory has decayed,. backtrack

'to the immediately preceding row in the same column pr to the
,

begipning of the column.

.

,

C
Axiom D4' If the present point of regard also prov4des a .=

....-- _,

perceptFlial image of the next'symbol and processing, it is complete;

then s kl.p over the next stimilus symbol to the following one.

,

It is apparent that the modified backtracking axiom requires the introduction

of cOmplicAions in the registers in whichs,perceptual data are stored: It

is 41seilear, as already remarked, that this can be accomplished in a

number of ways'. Perhap"a\the simplest way in the case of addition is to

keep not only the current partial sum but the precedAlg:;par, tial sum in the

nonstimulussupported register. If we want; this can also be done by t

A , ,0
simply adding another'register. One of the registers keeps the current

`partial sum and the other the partial sum that preceded it. This crakes'

care of backtracking one row. When backtracking is to the beginning; of the

w
column we alSo need to have ,somewhere storage of then carry, in the case of

addition,, or iiorrow, in the case of subtraction, and for this purpose still

another, register is easily added.- In Appendix C we give the full

procedures in terms'of,the normative models for multicolumn addition and

multicolumn subtraction, but we decided not to add a still more

complicated setup for these additional registey. In the case of

backtracking we include data analysis, and we believe it is obvious enough

how these additionalregistefs can be added to accommodats tha features.

)%



0'

21

required by the axiom on backtracking. Concerning the detailed algorithms,

the same remarks apply to the axiom on skipping.

As we, shall see, the fit of Model II to the data is certainly not

perfeCt, but it represents the main features of the data fairly well. We

shall not consider in this article any major extensions but we 4o discuss

in the last section matters that seem worth furt

1.6 Related Theoretical Work

r investigation.

The detailed procedural theory we have proposed for doing arithmetic

1
I
A

,

exercises does not seem to have a close predecessor in the literature, but

there are related proposals for different tasks. We mention especially

Groner's work (1978); he proposes various MarkoV models for eye movements

in such standard tasks as the threeseries prelem, bug the details are

quite different from what we have proposed. Closer in spirit is the recent

work of Just and Carpenter (1980 on a theory of eye fixations in reading

comprehension. rwl

-Their theory rests on two general assumptions. The first is that

of immediacy, i.e.', that a reader tries to interpret each con -tent word.

of a text ag/ it is, encountered: It is apparent that our procedures for

addition and subtraction satisfy this assumption: For example, in adding

many rows a partial sum is stored, not,the full sequence of numbers

attended to. Their second assumption'is'that the.eye remains fixated on

a word as long'as the-word is being processed. Just and Cdrpenter call

'L
this the eyemind assumption. It corresponds rather closely to Axiom D2

of Models I and TI.

Just and Carpenter go on to consider in a qualitative way the

evidently large number of processing stakes required for

2 2

0
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such as encodiAg, lexical access, semanXic interpretation, and appraisal of

D.
context. It is easy to see from this list or its variants that theTrocess

of reading text is a much more complicated task than,the eine we have

studied of performing arithmetic algorithms. There is "a close relation

c

between their two general assumptions and some of our axioms,
(

but we part

do details because of the different tasks stddi Due. to the greater -

.

simplicity Of arithmetic tasks we have been able to present a more, detailed

and complete theory than they have for reading; and consequently to study

rather thoroughly the quantitative aspects of the theory we have proposed.

2 Method

It this section we Will first give.a brief account of the methods

employed in designing and performing the experiments reported in this

article. First we will cOver.the methods for the experiment with adult

,subjects, and then indicate in what ways the method for the experiment with

children di'ffered Following that, we have provided a somewhat, detailed

account of a preliminary study of some calibration 'issues.

2.1 Method for adult subjects

1The study of adult subjects served two purpos.es. One was to obtain
a

a benchmark concerning the eye movements of expert subjects. The second

was to test the effectiveness of the algorithm used in the initial

4

register-machine model' as e normative model for human eye - movement behavior.

4
In this ease the subjects, who were two adult male college students, were

* %

informed about, the algorithms and asked to try.to follow them, including

.1w

the appropriate'eye movements, in their computations.

3.

ti
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Since We were testing normative aspects of the register-machine

model using expert subjects, a simple randomized likocedure wps used to

generate the arithmetic exercises useil in the experiment. Digits for each

position in each exercise, were preselected randomly, subject only to the

following constraints: (a) no left digits may be zeros, (b) each of the

additianexercises. must have an equal number' of rows and d'oluMns

3 X 3, 4 X 4, etc.); (c) in the addition exercises, no two horizontally

4
adjacent digit:can be the same, and no digit cal be repeated in

a column; (d) in the subtraction exercises, zero differences were

k t-^

hot permitted in the leftmost column.

There were 720.addition.exercises'and 600 subtraction exercises ,

used in the adult studies. These exercises were divided into 12 sessions

of addition exercises and 10 sessions of subtraction exercises, with 60

exercises in a session. Each addition session included 20 exercises with

3'columns and 3 rows of digits, ID exercises with 4 columns and 4 rows of

digits, 10 exercises with 5 columns and 5 rows of digits, and 10 exercises

with. 6 column's and 6 rows of digits.

ft
2.2 Equipment and Setup.

The experimental apparatus included a computerized eye-tracking

systeM, a display-terminal, and a simplified keyboard for the subject's

manual responses:. The computer -based eye-tracking system, known As PERSEUS

Ar
(Anliket, et al., 1977) incorporates. as a peripheral hardware device a

2-dimengional double-Purkihje-image eye-tracker (DPIET) developed by

Cornsweet and Crane (1973) and updated by Crane and Steele.(unPublished,

1977). PERSEUS uses advanced software--implehenteVon a.m diUm-sized

computer (PDP-15/76)--(a) to calibrate each subject's eye-pointing

\

responses, (b) to correct for linear and nonlinear systematic eye-tracking

9,i
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errors,f(c) to detect, measure and record higher orderpheqomena (e.g.,

fixations, s accades, and scanpathq and (d) to control the realtime

aspects of stidulus presentation and data.collection. PERSEUS delivers

highly accurate (less0/an 5 minutes of arc error over a field of 20 X 20 .

8

-degrees) measurements of a subject's pointofregard.

The PERSEUS system was interfaced with a dual DEC KI10/System

running a.modif,ied version of the TENEX operating system. The KI10

) 'system was used to select and present precompiled exercise items. Both

PERSEUS and the KI10 systeb were interfaced with'an IMLAC PDS-1

minicomputer display system, and a subject keyboard. During experimental

sessions all communications from the keyboard to the KI10 and from the KI10

to the IMLAC display screen were monitored, controlled, and recorded by the

PERSEUS system.

The subjects were seated ina darkened room, facing the large

cathoderay tube (CRT) of the IMLAC on which the stimuli were displayed-

The distance between the subject's eye and the CRTface Was adjusted so_

that the 11 X 11 calibration matrix subtended a visual angle of 20 degrees

'` in both vertical and horizontal axes. Each subject was fitted with a

metal bite bar surfaced with dental impression compound. The bite'bar,

firmly attached to the DPIET/display complex, was used to minimize the

headmovement and to center subject to the cubic centimeter of space which

constitutes the eyetracker's 'ballpark', i.e., the transitory, movement

tolerAed by the DPIET. The calibration/correction system incorporated in -

PERSEUS permits the subject, calibrated at the beginning of the session,

tb leave the bite bar and to return to it with only a re calibration of

the center point. Subjects typed their responses through two keys of a

,
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simplified keyb9ard,on which they placed the second and-third fingers of

their preferred hand; this arrangement eliminated the subject's need to

look away from the display - -an act which would cause the DPIET to lose

track--in order to see the keyboard.

2.3 Experimental Sessions

EaCh subject had an introductory session or sessions in which he

was shown the ectuipment, and given an,explanation of the equipment,

procedures, and the purpose of the study. Each subject was then given a

trkal iun Is part of his eye-tracker calibration. When the eye-tracker had

been adjusted to track the subject's point -of regard throughout the display

space, the subject was .then instructed in the use of the keD6Oard through

which he was required to enter his manual respons4 's to the exercises.

4 i
The adults subjects dere instructed to look down each .column, adding or

. .

subttadfing as they proceeded, and to try to avoid processing numbers ou t

of the order prescribed by the algorithm.

Subsequent sessions had two parts: calibtation of the'eye-tracker,
I

followed by the arithmetic exercises. In the calibration phase, a field

of 121 dots, In an 11 X 11 array filling the 13 cm X 13 cm display region,

was presented. In other words, the calillration rows and columns were two

degrees apaft. After adjustment of thelutput voltages of the DPIET, under

a program cdlled EYESCA/4, the subject was asked .to respond td each of the

.1.;

calibratiom points in sequence by fixating the brightened"dali ration poirit

and then pressing a key when he was satisfied with his fixation. The

eye-pointing data, collected unde# a ptogram.called CALIBRXE, were later

used to generate correction filters,, via a program called ADAPT, which were

used to correct the eye-pointing data collected, via a program called

COLLECT, during the subsequent arithmetic session.

ti

.42
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4 `.

The aritmetic exercises were displayed in the standard (row and
Q

,..
,

column) format andpjettedV.nto the pace defined by the 11,,X 11 array

leAk

of calibration points so that each numeral or symbol (except underline) was
9

.s

centered in a cell whose four corners were contiguous calibratiorrpoints.

Underlines'were placed above the horiZontal midline of cells containing

them so that they would be better associated with the digits in the cell

41
above. The were approximAely 32-mm high by 20-mm wide A symbol

(+,-) for addition or subtraction as appropriate was included in the

exercise as Presented.
a

Each new exercise was presented with tentative ansultr digit placed

.v.in 'the usual location at the base of the firt,t column, i.e., just below the

bar line.. The tentative answer digit was correct 50 percent of the time;

incorrect tentative answer digits were randomly selected to be either one

digit higher or one digit lower than tIte correct answer digit 50 percent,

of:the time. The digit 9 was reated-as being 'less' than the digit 0 for

.4
this purpose.

The subject indt ucted to add the digits in' each column and
'41ile.

,

1
to respond by pressing one k y to indicate agreement or an alternative key

..

x

to indicate disagreement with
c.,

the mach/ne-proferred answer.digie. If he

. _
_......,.

regNted the proferred 'answer and was correct, the computer responded.by

)
4

changitg the answer digit to the correctivalue In any case the digit for

the next column was then displayed. 'After_,the, subject had completed the

exercise,-the computer mSrked the incorrect digits in the answer row with

slashes theOugh the numerals and the correct digits were displayed below

them. After a five-second psnte, the next exercise was displayed. Thip

proceduremas repeated until all 60 exercises had been completed, at,

27
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which point the computer informed the subject of the. number of correct

answers and the number of exercises in the session.

In this study,, the subjects were not allowed to delete an answer

. digit once it had been selected. Also, there was no explicit display of
.e6

borrowing or carrying information, and no provision to allow the subjects

to.externally,,retord such, information:

2.4 Method for child subjects

The purpose of the study with children was to test the

effectiveness of the algorithm used in the initial register- machine model

is 4e predictor of eyelvovement performance.

The subjects, two 147year -old,,girls and two 11-year-old boys; were

selected from a pool of volunteers on qie basis of the ability of the

DPIET to successfully track their eye movements throughout the display

space. This reqUired subjects who Could voluntarily limit head movement

and whose pupils were relatively large in the testing situation and

unobstructed by drooping eyelashes or by drooping upper eyelids.

The children's curriculum consisted of 1000 exercises, of which 600

were addition and 400 subtrattion exercises. They were divided into blocks

of 100 exercises, composed of 5 randomly generated items from each of 20

specific pre7determined arithmetic exercise structures. Oith±n each block,'

the order of presentation was randomized; that is, c)r each position in the

set of 100 exercises a uniform distribution over the remainint exercises

was sampled to cho se the next exercise, without replacement./iThe 10 blocks

of 100 exercises were then concatenated in a single ordering so that each

subject would complete some initial segment of the same ordering-

. See Appendix B for a listing of the twenty arithmetic structures

used for the children's cdrrinulun.
t .
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The addition and slibtraction structures were selected to be within ,

,;

to fourthgrade range oft7fficulty as determined by standard

*

American arithmetic curriculums and studies,. which are in, close agreement

''':: on this toN.c. Within this range of diffiCultyYpatticular structures were r

A

. selected to represent the range of difficulty ordinarily encountered at
. %

this age level (ten to twelve,y a old).

The, equipment and se ups for the children were exactly the same

as for the adults. The procedures used were similar to those for adults;

we note some important differences below.

i
..,

Ca ration of the sutject to the eyetracking system was, in
. /

general, more difficult' with the younger subjects than with the adults.

One problem was Chat-the calibration procedure flas for the subjects both

...,
timeconsuming and attentiondemanding The children were less able, to

,t4

cope with these demeAds than were the adults. We report below in -more

detail on studies conducted with.the aim of lowering the derads of tine

and, effort placed on subjects during the calibration 'phase.,

Since the largest of the children's exercises did not fill the

-%13cm X 13cm display'tpace, their eyetracking responses were calibrated

using Csmaller, relatively centralized, 8colunn by 11row rectangle of

paints which encompassed the'display field in the children's exercises.

4
This matrix of points excluded the more difficulttotrack peripheral

,

Amaithsation points (in particular the corners) of the 11 )( 11 array and

also significantly reduced the number of calibration points to which the

subjects hsd.to respond during the calibration procedure.

In the children's sessions each exercisewas first displayed

without any proffered answer/ digits. The subject pressed any key to
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indicate that'he had mentally completed the arithmetic operations on the

first- column and wanted.to.see the two possible answer digits for that

column. Two digits, selected at the ti.me'the curriculum was generated,

then appeared on'the display. One of digits was the corr t answer and

the other was false, chosen an .agrandom basis to be one d git greater or

one digit smaller than the correct answer (again with 9 < 0). The proper

digits were displayed below the answer cell in the current columnowith the
0

smaller digit above the.larger d git By pressing the distal key of the

keyboard the subject indicated /is choice of the upper proffered digit.

Or, he indicated his selectio of the bottom proffered digit by pressing

the proximal key. In response to his selection, the computer erased the

two proffered digits and entered his choide in the answer cell".

.Upon completion of each exercise,, the computer drew a slash

through each incorrect -digit and displayed the torrect digit below it.

." A check mark was placed to the left of the answer if the exercise was'

answered correctly. When the subject was ready to proceed to the next

4
exercise, he tapped any key. The computer responded by erasing the display

and presenting a central fixation cross. The subject was instructed to

fixate the center of this cross and then to tap any key. The computer

,then presented the next exercise.

When subjects had completed ten exercises in this fashion, they

were allowed to get off the bite bar and rest. Most of the children's

sessions were 50 exercises long, though a'few sessions were shorter, i.e.,

40 or /30 exercises. Thenumber of exercises answered correctly was
410

displayed"at the end of .the session. No credit was given for partially

correct answers.

4.

a
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2.5 Study of Calibration Procedures

1
A typical problem for eye tracking devices is that the point of

regard as estimated by the eyetracker may not agree with the subject's

own impression of his pointeof regard. The PERSEUS system is designed to

bring the subjective and objective estimates df the point of 'regard into

close agreement. This is accomplished by having the subject Look

successively at each of 121 calibration points distributed throughout the

trackable display space. The CALIBRATE program displays the 11 X 11 array

of.calibration points in,CRT memory mode. It then causes the current

calibration target point to be brightened as an indication to the subject.

that this is, the point to be fixated. .The subject is instructed to

fixate as closely as possible the brightened point and, when he is

subjectively satisfied with his fiXation, he is to tap a key, which causes

the computer to collect 100'samples of_DPIET vertical and horizontal

output voltages at 2rmsec intervals and to locate the fixation point.

Thy coordinates of both the displayed calibration point ale the computer

estimated pointofregard are then stored in a CALIBRATE file and displayed

on a separate CRT y'lewed only by the experimenter. If, in the experimenter's

judgment, the subject's fixation response to one of the calibration 1

-Points appears to be grossly out of line with other local responses, the

experimenter can cause the calibration target in question to be brightened

again so that the subject can refixate it; this type of recalibration of

a.:target point automatically egases.the.previous recofd for this point.

On the assumption that the normal subject is more likely to be correct

about the location of his own fixation, his subjective impression being

tv

7
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that he,i8 looking directly at the current fixation point, the target
1

point is taken to be the best estimate of the true point -of- regard and the

computer-edtimated point-of-reglrd, if systematically different, is

distorted by error. The difference between the two estimates is used to

generate Corrections for the eye-tracker data collected in the subsequent

experimental session. The matrix of calibration points routinely used in

expetimentavith adult subjects nsists'of 11 rows by 11 columns- -with

a two-degree sepakation between adjacent rows and between adjacent columns --

and for this reason the calibration procedure is somewhat taxing, .;

particularly for the yodng subjtcts. Thus, there is substantial

motivation for reducing the total number of calibration points to,lr

minimum and for minimizing the neeld for recalibrating:

The way that PERSEUS uses the 121 ,sets of objective and subjective

coordinateslof the calibration session is to fit the computer-estimated
37.

fixation\coordinates'to the corresponding target display coordinates

using,a nonlinear regression. The result is one correction surface for

horizontal eye-movement components and another correction surface for

vertical eye-movement components. Thesefilters are used by the REPORT

program to correct the eye-movement data obtained in the,relate4

experimental session. PERSEUS has the capacity for computing regressions

for models with up to 35 parameters, including powers of terms through the

sixth power. Using all 35 parameters, large Seductions in the residual

error for the correlations of LAG 0 qre obtained.
. 1,v

Our concern was to find a simple regression model which would

provide adequate predictions of the corredtions needed. We assumed

initially that, with 121 data points available and with a usual predictively

32
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, sound ratio of about 1 parameter per 10 data points, a regression model

with 12 parameters should be fairly satisfactory However, our main

est was not in finding the optimal ritodel.for prediction, but rather

1( to ensure that the model we used was adequate for the discrimination task

called for the experimental design. Essentially, we were concerned to

be able to identifyoin which 2-degree X 2-degre cell a subject's fixation'

is contained, out of the 100 cells in'the display space.

We decided-to test.three models of six, nine, and sixteen

parameters respectively. By a 6-parameter model, we mean one which

uses six, parameters to detelbine the correction for each coordinate. A

related 6-parameter model is used to determine the correction form the

coordinates in terms of the Euclidean distance measure: [(x -x')2
(y..y,)211/2

which we denote43y d. The models for the x coordinate are presented

belotk, with (x,y) indicating,the target point and (x',y') indicating the

respon8V point.

A. The 6-parameter model

x - x' = 130 + bix + b2y + b3xy + b4x
2
+ b5y

2
+ e

B. The 9-parameter model

x - x' = b0 x + b2y + b3xy + b4x
2
+ b5y

2
;I- be y

+ b7xy
2
+ b8x

2
y
2
+ e

C. The 16-parameter model

x x' = b0 + blx + b2y + j)
3
xy + b4x

2
b5y2 + be 2

y

+ b
7
xy

2
+ b8x2y2 + b9x3 + b10x

3y + blix
3
y
2

3+3+ b
12
x y b

13
x
2
y
3
+ b14xy

3 + bi5y
3
+ e
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We Used the state collected in ten calibration, sessions in order to

. test the three models. The dalibration sessions that we considered are

labeled in the tables below as: 2D, 2E, 3A, 3B, 3C, 3E, 4A, 4B, 4C, 4D.

Each of the ten calibration sessions preceded an experimental session

in wIliclipthis adult subject performed exercises in arithmetic. The numerals
S

refer to the day of the session, and the letters to the sequence'of sessions

. in a particular day. 1n other words, 3A, 3B, and 3C refer to the first

three calibration sessions on the third day for this subject.

These data sets were subjected to three separate analyses. The

first two analyses were used to select a model, and the third was used to

J,
better gauge tike predictive capability of the selected model.

2.5.1 Test of Explanatory Power

The first test was to'look at-the sum of squared difference between

the correction needed to put the recorded point on target and the

correction as determined by the model. This difference of differences

serves as a measure of the error after correction by the various models.

The data obtained for the x and y coordinates and the measure d is

contained in Table 2, below, labeled "Sum of Squared Differences -- Lag 0."

As one would expect, with increasing number of parameteii, the sum of

squares decreases. However,. investigation of the regression coefficients

.1. in both the 9- and I6-parameter models, shows that coefficients which have

significant t-statistics for the 9- meter model are not signifiSant

in the 16-parameter model. 'This -loss of significance might be an

indication that over-fitting is taking place in the 16-parameter model.
1.

It may be seen from TabI that the Majority of the values lie

between 0.8 and 2.4. Values in this range, then, may be taken as a lower

bound on the error we can expect when actually predicting coordinates.

1
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Tablq 2

Sum of Squared Differences -- Lag 0

Cooid- \session,
params

x-6

x-9

x -16

y-6.

y-9

y-16

d-6

a-9

d-16
===

I 2D

1.05

-1.03

0.83

2.70

1.99

1.80

2.40

1.83

1.68
===

2E

1.31

1.18

0.90

2.83

1.99

1.74

2.84

2.00

1.61
=

3A 3B

2.48 1.141

2.47 1.32

1.76 '0.99

2.23 2.09

1.80 1.62

1.44 1.49.

'1.56 1.66

1.26 1.43

1.11 1.03
==__==__==

3C
=

1.45

1.34

0.99

2.40

1.67

1.59

1.46

1.17

3E

.1.31

1.16

1.00

1.47

0.83

0.76

1.71

1.42

1:01

"1

4A

1.87

1.80

1.36

.2.00

1.43

1.15

1.59

1.57

1.31

4B
==-.===

1.24

1.06

'0.84

1.50

1.20

0.98

1.20

1.08

0.65

4
4C 4D

===

2.32, 1.32

2.14 14019

1.53 0.84

2.19 2.63'

1.39 1.74

.1.13 1.57

2.74 2.55

1.94 1.67

1.10 0.91
=_==__==

r
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2 -.5.2 Test of Irpr-session Prediction

The secon&and more crucial--test was tq make A similar comparison

of ideal correctione tomodel-predicted corrections, but across sessions.
1

In this test, the parameters for the model are estimated by regression on

the 121 data points from a session and then used to predict corrections for

-

the 121 data points in the next se sion. In some cases the comparison is

across days, but in all cases the subject has.goiten off the bite bar

between calibration sessions. Since we expect some slight change in the

subject 's head'position in the DPIET to result from the subject's getting

off and on.the,bite bar between calibration sessions, this is a severe test

of the predictive abilities of the model. See Table 3 for the sum of

squared correction d ifferences, lag 1.

Surprisingly, the I6-parameter model did clearly better than the 4

9-parameter model at pred4cting the corrections for subsequent Sessions.

too

Out of 27 comparisons between the 9- and 16-parameter models, the

9=Plrameter model is superior in only 8 cases: prediction for session 3B

'by regression on 3A for x, y, and d; prediction for 3C by 3D for y and d;

prediction for 3E by 3D for x and y; and prediction for 3A by 2D for D.

Less surprising is the relative flatness of perforMance over the range of

6 to 16 param ers.

11

If the choice of model were to be based strictly on this test, the

16-parameter model would be the obvious choice. However, we felt that

the small difference in performance on the test gave us license tp consider

other factors. One of the factors was the lossof significance f

parameters when using the 16-parameter regressiOn. Another factor was

the low prior 'probability assigned to predicting better with a model of

more than/12'parameters. Finally, a factor related to the second was

36
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O Table 3 T7.'

Sum of Squared Diffeences -- Lag 1

Coord- \ sessions
params

2D-2E 2E-3A
=== -= ==

3A -3B,
===-

3B-3C
===- --=

3C-3,E E-4A 4A-4B 4B-4C 4C-4D= ==
x-6 4.68 5.84 6.21 3.12 2.30 8.58 2.56 5.68. 2.21

x-9' 4.54 6.01 6.22 2.99 2.12 8.60 2.44 5.60 2.16

ic -16 4.45 5.53 6.30 2.71 2.24 8.30 -2.38 5.36 2.07

y-6 5.40' 9.29 2.91 3.43 1.96 5.5i) 2.38 4.02 3.94

y -9 4.59 8.91 2.50 2.80 1.40 5.36 2.11 3.21 3.4A,--

y-16 4.43 8.64 2.57 2.83 1.47 5.35 1.95 2.97 2.95

d-6 I 5.31 4.66 2.94 2.16 2.25 1.192 1.76 5.50 3.18

d-9
I 4.54 5.00 2.90 1.95 2.04 2. 1-70 5.13 2.43

d-16 I 4.31 5.06 2.91 2.15 2.00- 2.08 1.52 4.70 2.03
========

3 7
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the possiblity of 'needing to use fewer than 121 data points in calibrating

children (as indeed turned out to be dlaajtese). For these reasons,

decidecf to use the 9-parameter model in computing the corrective filter

V

to.be uqed in the scanpath analysis of all the experimental data reported

kiere.
,)

Another important piece of information"to be gleaned from Table 3

isa'sense of how well we could do if we did not calibrate a subject each

time he gets on the'bitd bar. To give a better sense of the performance of

I
4

the models as'exemplified in Tabld 3, we provide a rough conversion (see

Table 4) frOm sum-of-squares error to minutes of arc in visual space.

Considering that the cells in which we are trying to place

i tions are two degrees square, and that the visual symbols are

generally centered in the square, we believe that the error generated by

not recalibrating after a subject naves and then remounts the bite bar is

acceptable, .hough not desirable. It is only rarely that the error could

be expected to be more than 20 minutes of arc, which means that when the

corrected fixation is in the central half of the cell, we can be virtually

certain that thc'erue fixation is in We cell. We made use of this result

when it was decided that the child subjects could need to rest off the bite.

bar periodically during arithmetic sessions.

2.5.3 Test of IntrarsessiliVredic on

After 'selecting the 9-parameter mode on the basis of the strict

lag-1 test, we wanted to ome idea of ow well we could predict

corrections after t calibration par of a session but while the sublek

was still positioned on the bite bar. would give us the best sense of

the accuracy of the adult data, for which t ere was a separate complete

_calibration for each experimental session.

L
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To make this test, we used the first half of a calibration session

(61 points) in a regress.on to estimate:the,parameters in the'97parameter

model. We then, applied the model Witttestimated parameters to

the last 61 points (one point was used twice for convenience) of the

calibration session. The spatial distribution of the two sets of points is

roughly equivalent for our purposes.

Table 5 shows both 'sum of squares (S1S) of differences (as 4rables

2 and 3) and mean absolute deviati,on.s. The mean absolute deviation (MAD)

is the average of the absolute value of the difference between the

correction needed and the correction determined by the model. MAD's are

much less influenced by the large residuals produced by outliers than the '

sum of squares statistic. Thus MAD's givea better appraisal of the

general fit, while S's give a better appraisal o how well outliers are

fit by the,mode 4

In or er to obtain a rough comparison of the results in the third

test with the results the first two tests, we can multiply the SS

statics in Table 5 by two in order'to compensate for the difference in
A

size between the data sets. The same procedure can be
4
used to estimate ,

11,

minutes of arc from the SS statistic, using Tables 5 and 4. It will be

seen that two times the SS value in Table 5.is grater than 4.0 in only

'four cases, y and d for sessions 2D and 2E.) Thus, by this procedure,
5

i
we esonserVatively estimate our withinsession acc acy as,.being

a

approximately 16 minutes of arc.

From a comparison between Tables 5 d 3, we see that intrasession

;elation accounts for more than half the correction' error. Thig giveg

added confidence to the view that w can use a single 'calibration at the
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CAP

Sum of Squared Differences and Mean Absolute Deviations- -Same Day

Table.5-

%AV

session

x-Coordinate
1CD, SS

y-Coordinate
MAD, SS '

utlidean
MAD,

Distance (d) /

SS...
2D , .056, 0.84 .073, 2.21 .072, 2.06

of . ...

2E. .060, 1.22 089, 2.71 .0817 2.21'

--)

3A .05T, 1.33 .064,6 1.70 .049, 0.82

3B .049, 0.90 .079, 1.98 .048, 0.86

3C .052, 0.97 .057, 1.83 18, 1.24

3E .051, 0.93 .043, 0.72 .052, 1.01

4A .04S, 1:67 .054, 1.38 .048, 1.35

4B . .639, 0.70 .050, O'.99 .040, 0.6%,0,:i

4C .051, 1.51 1.05 .040, 0.90 P

4'

04

0

..

4

4,

ti
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beginning of a session, even though the subject may dismount.and,remount

the bitebar during the session.

2.6 Problems -Encount

2.6.1 Problems with Subjects' -

We had several serious problems in gathering data friip young

44i0children, and these problems in tu made it difficult to gather as much

data as wecnn.14 have liked from the students of the Ravenswood School

District. One dif the reasons for selecting the Ravenswbod District was

its high proportion of minority studenfs. Only one of the subjects for

* which we have a large number of observations was a minority student from

that diStact.

There are several problems in tracking the movement of young

children's eyes with the PERSEUS system. Lids or lashes obscuring the

eye are one sort of problem. Dark eyes, which absorb more of the incident

light and reflect less are anotheN,problem In general children,with

obscuring lids had to be excluded, while those with obscuringllashes could

sometimes be, used if they first'curledtheir lashes out of the way. Dark

eyes simply a acerbated any other problems which may have been present,

0, decreasing the likelihood of a successful session.

By far the largest diffiCulty with very young children is the
Ok

attempt to use a passiVe restraint system. Although sounding formidable,

the, bite bar merely pro

steady.

willing subject withia base to help keep

4

ing on the bite bar can sufficiently disturb its orientation,

. '

and excessive mOvgnent of the head around the bite bar, or excessive

movement of the body in the-chair, are both possible and capable:of

. .

causing foss of track. Many young children, around ti& age of eight, seem(

elir)
-.E
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incapable, even when willing, to main still enough to eves set the

system up, let gonekeep them in track during a session.

tOur chief difficulties with subjectsover the age of nine were

equipment and software problems. These are described:more fully' in the

Section on equipment.,

We be'gan with adult subjects from St4nford, and,had little trouble

gathering data. We then attempted sessions,with a very young child (eight)

which convinced us to work slowly down beginning with.older children.

Most of our attempts to gather data from eighth-grader6 in _the Ravenswood

district were thwarted by what later turned out ,to be a problem with the

'fines-tuning' of the SRI eye-tracker. The defect which created small

errors in"monitoring adult saccades, resulted in loss of track with the

children. Only a very mall amount of data was gathered in this period.
L-

After the eye- dier was serviced by SRI,we were able to work

more successfully W)th children, It was during the summer of 1980 that

most of the children's data was collected. It was at that tine much

' easier to make arrangement, with' children from a Palo Alto summer school

program, and we tried sever.al volunteers,-eventually gathering data from
1

two fifth-graders,.Wevere also fortunate in that one of theeighth-

graders from the Aavenswood District &greed to return to ,allow us t

41
,colleCt substantial data on her eye-meVements.

The data collected from individual subjects is massive in character.

collected' and anal37 d data consisting of more than a quarter of a

million -eye fikations.
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2.6..2 Pioblemsiqith Computer Systems

There were many problems with the hardware and software for the

system we used. The basic task we faced was the merging of an already

complicated eyetracking system witht*o other computer systems used to

present the curriculum. The hardware communication problem was solved
4

by the design and implementation of an digital asynchronoys receiver

transmitter (DART), which acted al a liktnication switch, controlled by

etie PERSEUS system. In normal mode the IMSSSKI10 computer system

could communicate directly with the, MAC P11S1 system, in, order to load

programs into the K110 and,PDS1. When experimentation was to start, the

PERSEUS system could set the DART to 'intercept all communication between

the KI10 and the .PDS1, sending in'ttead,ta PERSEUS. PERAUS could then
,

procest the communication, and send on appropriate messages to the

PDS1 or KI10 as needed. V
I

% 4t
Software protocolsfor:,,OFGunicating bettieen the KI10 prograMs

and the PERSEUS programs had to' be .generated, as well as means tor
4

eransferring data from the'PERSEUS system,to the KI10 system for further
4

analysis.

4

Additional"software design and implementation pork also went

in to overcoming timing problems" in the presentation of the curriculum.. ,

t,

-p , 2

The K110 is a,timesharing system, and inevitably created delay and

inconsistencies in the timing of the presentations. Adjustments tlere

required in thevcurriculum compilers and interpretersand in the display

programs onthe PDS1 to minimize the effect of the timesharing.,environment-
.

The keyboard for student use also presented a hose of problems.

We originally expected to.use a custombuilt keyboard in conjunction with.

40.

5.)



a switch controlled light and a half silvered mirror. The purpose of the

proposed arrangement was to let the subject see both the keyboard and the

display. With the light off, the subject T.J",tild`tee the display through

tie half-silvered mirror, and when the subject used the knee or foot switch

to turn on the light, the keyboard would be'reflected in the mirror, and

the displaywould disappear.
1

4

A speCial sized keyboard was desigried, built and programed, and

1 many versions of the abdve-described system were set up and abandoned. It

. was finally decid1 that the half-silveiedmirror interfered with the

display image,ttb-much, and that the light #terfered with the eye-tracker.

Further, the syStem was quite complicated. The alternative of having the

subject use fewer keys which could be accessed by feel, required changes

in the curriculum presentation software.

All of these software and hardware problems ceased delays which

put off gathering data from any subjects. A further problem caused delays

in gathering data from children. That problem was a maladjustment in the

SRI DRIET eye-tracker. The main effect of the problem for atiults was

'
an over-shooting of the target in saccades. With children,,the effect was

an increased probability of the tracker losing track. When the DPIET was

adjusted, the problem was entirely corrected. Still, additional work. was

needed to Change the calibration routine for children, since tracking

children at the periphery of the twenty degree field (cohere there were no

experimental stimulus items, however), remained difficult. 0.

ti
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3 Results
.

We have divided the results
40

into two-main sections. The firstj

deals with the analysis of fixation durations. Here we examine in some

45

detail the probability distribution of,fixaitn durations and also

sequential effeCts of one duration on another, as dell as context effects

of position in the exercise, etc. In the second section we examine the

random-walk for the direction of eyemmovement described earlier in the

theoretical section.'

3.1 Analysis of Fixation Durations

The question of whether the fixation durations follow an exponential

distribution is of special interest, for this is a consequence of our

simple axiom of fixation. This consequent'; if true, would have

far-reaching implications about the prO-C7e'sgs underlying these durations; as

we stated earlier it implies that the process giving rise to these

durations.is without memory. Also, exponentiality implies independence of

the fixation durations on any features of the exercisejbeing performed,

such as the point ,of regard of the fixation, the sum of digits is the

?

column that is being processed, or whether_or not aColumn had a carry from

fri

the previous column.

These implications were tested across.atudents. We mention that

the exponentiality is easily shown not to hold if we do not include a

delay parameter since the fixation duraVons are necessari,ly at least

26 msecs long by definition, a number chosen after preliminary anglysis.of

the data and believed to be consistentlikth other we-movement data and

analyses. The data are not highly sensitive to the exact number chosen.
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The process of interest is then thought of as having two components, a

fixed waiting time, followed by a proceSs with exponential waiting times.

Therefore the delay parameter has tobe estimated. Since we are typically

dealing with large data sets of many thousand points (typically about

4,000.), it is certainly sufficient to estimate this parameter for n data

points by taking the minimum fixation duration and multiplying it by n/(n+1).

An immediate but Weak test for exponentiality the closeness of

the mean. to the standard d which are equal for the exponential

distribution (but are'also equal-for many other distributions).

We have the following table of means and standard deviations in seconds.

(Remember the minimum multiplied by n/(n+1) has been subtracted out.) In

this table, KJ and JF refer to the adult subjects, JM and CJ to the

eighth -grade girls, and CH and JU to the fifth-grade boys. The numeral

following the two letters refers to the number of the session, numbered

separately for the addition and subtraction sessions--referred to by A

and S, respectively, aft6r the numeral--for the two adult subjects.

It appears .that the standard deviation is almost always smaller"

than the mean- -there are only five contrary cases. This indicates at least

two possibilities. One possibility is that the tail of the distribution is

thinner than that of the exponential. The other possibility is that the

mass which for the exponential distribution would be near zero has been

shifted to the right. We shall return to phis later.

(

4 7
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Table 6

Estimated Means and Standard Deviations of Fixation Duration
.

for individual Subject Sessions

m s

KJ1A .3378 .3204

KJ2A .3338 '.3142

KJ3A .2918 .2652

KJ4A '.216,8 .2146

KJ5A .2834 2659

KJ6A .2553 .2261
.

KJ7A .._1.13,..16 .2032

KJ8A .2379 2048

KJ9A .3210" .2933

t

KJ1OA 3232 3014

KJ11A .2784 .2586

KJ12A .2711 . 2629
..,._

KJ2S .2527 3268

KJ3S .2368 2053

KJ4S .2668 .2227

KJ5S 3237

KJ6S .2582

KJ7S .1293

KJ8S .1813

KJ9S .2425

.2838

.2440

1336

. 1689

2215

KJ1OS 379 - .2300

-

m

.

s

JF2A .3020

.1193A .2796

JF4A .2835

JF5A .2615

JF6A .2721

JF7A .2293

JF8A .2675

JF9A .2694

JF1OA .2213

- JF11A .3027

JF12A .3008 -

JF1S .2795

JF2S .2768

JF3S .2807

JF4S .2985

' JF5S 2873

'JF6S 1 .2829

JF7S .2903

. JF8S .2982

JF9S .2713

JF1OS .. .2436

2460

2300

.2227

2262

.2232
,

.2219
I

2248

°22129

1972

.2730

2479

.2094

1990

2183

2466

.2214

.2353
4,

2432.

.2386

t-

.2438

.2158

0,
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Table 6, continues]
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J

JM1B -' .2048 4 .1802 CH1B .1572 .1450

CJ2B .2714
.

.1978
-,,

CH2B. . ..- 1422 , .1380

CJ3B :2433 .1639 CH3B .1428 .1421

CJ4B .2390 .1602 CH4B .1444 .1461

CJ5B .2552 .1746 CH5B .1493 .1412

CJ6B .2601 .1761 CH6B .1408 .1324
.. ,

CJiB .2541 .1695 CH7B .1424 .1420

CJ8B .2429 1800 0

CJ9B .2671 -2025

CJ10B .2487 .1726

,-,

0CJ11)3 .2424` . .1794

-
C312B .2495 .1764

CJ13B .2512 1736

N
.

JUO1B .1661 .1596 JUO6B .1528
,/,./

.1490

JUO2B .1516 .1531 JUO7B .1611 .1670
.

JUO3B .1571 .1559 JUO8B .1473 .1603

JUO4B .1746 .1625 JUO9B. .1868 .1854

JUON .1597 . .1592 JUlOB .1843 .1921

t

1

o

1.
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3.1.1 'Correlation of Successive Fixation Durations

The second test concerned the \Krrelation of successive fixation
ved.

durations. -We-show-In-Table 7 the autocorrelatidns of lag one for

full sessionts'for the adult subjects. The statistic can be written as

follows where d reprdsents the ith fixation duration, and d their
i

average.

n n 2 n 2

E (d d)(d / scirt[ ('E (d d) ) ( E (d d) )]
i=2 i i-1 i=1 i i=2 i-1

The second row of data in Table 7 shows Oke actual number of fixa.tion

durations in each session. As is evident, there is considerable variation

in the number, especially across subjects. ti

For the data of KJ it seems'that therdOis every small positive

correlation since 15 out of the 17 sessions have a positive correlation.

The data for JF seem to have a small negative correlation, if any at all.

Overall we may conclude--that there is really no significhnt effect of the

length of a fixation on that of the successive 'fixation: This finding is

therefore consistent with the (delayed) ponential model.

3.1.2 Chisydare Test of Exponential Distribution

To further evaluate the exponential modelve decided to use a more

global test. In standard fashion, we divided up the range of the

distribution into n intervals, determined the number of data points

that fall in each interval, denoted n
i

, where i denotes the ith

interval, and determined the expected - numbed of data points

in each interval, denoted exp . The intervals were chosen in order to have

2

the exp nearly constant. The statistic E(n exp ) / (exp ) has an
i i
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asymptotic chisquare distribution with n-2 degrees of freedom, because

the final cell is determined from the n-1previous cells, and we must

. . -

estimate the parameter of the exponentia riliution. We tried this

test on the addition and subtraction fives, with resultg at least
r-

as pessirdistic as those tabulated,beloW, on nine degrees of freedom.

JF2A JF3A JF4A JF5A JF6A JF7A JF8A

1127- 1316 861 848 998 1119 1080

From Table 6 and these results it was clear that the simple dela

exponential model was not going to fit well.

3.1.3 Alternative Models

Elimination of possible contaminants. FOur methods of altering, the

models were attempted. First, it is possible that the data are contaminated

with nonfixations or saccades. Assuming that these contaminants have an

exponential distribution we can estimate a mixing parameter, which

indicates the degree of contamination, and two exponential parameters.

This model was not attempted but was replaced with the following model
iii

which was computationally easier to implement. If the mass of the

/0',.....0istribution of the Contaminants is probabilistically nearly disjoint

from that of the fixationjurations we could then guess a cutoff point

and examine only data which were greater than that point.

Random delay. Second, it is possible that there is a process

which causes a delay that is not fixed but random. Assuming that the

distribution of the delay is also exponential we need to estimate two

parameters of a distribution which is the convolution of two exponentigl

distributions with different parameters. -4'
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Table 7

Estimated Correlations of Successive Fixation Durations

for Individual Subject Sessions

JF2A JF3A JF4A JF5A JF6A JF7A JF8A JF9A

correl .032 -.046 -.06011-.034 -.029 .048 .005 -.614

count 4723 4698 3114 3933 4359 4629 44.4 4790

KJ1A KJ2A KJ3A KJ4A KJ5A KJ6A KJ7A KJ8A

correl .022 .056 .027 .071 .031 ..085 .016 .029

count 739

JF1

7

5583 6406 8194 6304 6762 6616 6916

JF2S JF3S JF4S JF5S JF6S JF7S JF8S

JF10A JF11A JF12A

040 037 .0146

5789 4523 4954

KJ9A KJ1OA 1311A KJ12A

-.032 .011 :034 .041'

4624 61,08 6206 6521

JF9S JF1OS

Correl .022 -.050 -.018 ,.050 -.049 -.017 014 -.036 -.005 .040

count..,, 2686 2292 2317 2574 2467 2353 2322 2218 2435 2312

KJ2S KJ3S KJ4S KJ5S KJ6S KJ7S KJ8S KJ9S KJ10S

correl .027 .008 -.037 -.053 '.018 .156 .035 .032

count. 3172 3362 2917 2678 2918 4842 3814
No,

JM1B CH1B 0H2B CH3B CH4B CH5B, CH6B CH7B

correl .090 120 .109 125 .139 077 114 132

count 2561 5146 4163 3297 3482 3799 4981 3658

494

CJ2B CJ3B CJ4B ,CJ5B 'CJ6B CJ7B 'CJ8B CJ9B CJ1OR

correl .060 070 ,,059 094 -059 066 .041 -.000 .022

count 1383 1605 X1564 1221 1381 1206 1361 1395 1S1

CJ11B CJ12B CJ13B

correl .018 031 .047

count .1095 1196, 1045

correl

count

JUO1B JUO2B JUO3B JUO4B JUO5B JUO6B JUO7R JU0811 JUO9B JUIOB

.043 .086 .081 .094 098. -096 .079

3427 '3228 2883 2894 3091 2719 3149

52

.101' .096 .097
---1

.3420 3494 2890
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Gamma distribution. Third, it is possible that the fixajerfis are the

result of a convolution of exponentials with the same parameter. This gives

rise to the gamma distribution. These last two model§ both have interesting

metrics on the distance from exponentiality. The convolution model has the

parameter for the expectation of the first process. If this is, say,

10 msecs, we see that except for a process of a very short duration we halie

nearly an exponential process. In the case of the gamma distribution we

estimate two parame , y and p . he parameter p has the

interpretation of the number of exponentials that have been convolved in

order to form the process. The closer the estimated p is to one, the

closer the process is to an exponential process. This is because the form,

for the gammi distribution includes the exponential as special case, when

p is one. We mention here that we used maximum-likelihood estimates

which were found by a gradient search routinip.that started at the

method-of-meients estimates
onw

In Table 8 we show the results of,the model with a cutoff point.

The ;cutoff point was decided to he .040 seconds on the basis ofr examining

histograms of the distribution of.fixation durations between (rand .100

seconds. From these, a cluster was apparent which was consistently reduced

in size by 40 msecs. The first colbmn of datadm Table 8 shows the ratio

of the reduced sample size to the original sample size when the cutoff is

imposed. The second column shows the chi-square,value for 19 degrees of

freedom.

Next we show in Table 9 the results for the convolution of two

expOnentials. The method of maximum-likelihood was used to estimate the

two parameters of the convolution, Al and X
2*

Here the parameters are

the reciprocals of the means of the two distributions. Finally we show ifi

53



Table 8

Chi-square Test of the Exponential Cutoff Model

with 19 Degrees of Freedom

Ratio of

sample size

Ratio of

. sample size X2

i.

JF1S

JF2A 4383/4690 578.2 JF2S

JF3A 4414/4698 731.0 JF3S

JF4A 2961/3114 ' 526.9 JF4S

JF5A 3609/3933 403.0 JF5S

JF6A,___,405.f/4359 646.9 JF6S

x
2

2540/2686 412.9

. 2197/2292 362.9

2219/2317 364.8

2445/2574 369.7

2364/2467 366.7

2201/2353 291.5

JFJA 4015/4629. 228// .6 d JF7S 21717/2322 302.0

JF8A 4119/4454 559.9 JF8S 211a/2218' 353.1

JF9A
k.

4470/4790
1

700.0 JF9S 2224/2435 189.2

JF1OA 5026/5789 422.9 JF1OS 2041/2312 135.8

JF11A 4188/4523 1284.0

JF12A 4707/4954 1262.0
C

V,

PIA 1100/7399 191.2
,

KJ2A 10'5099/5583 134.8 KJ2S 2862/3172
.

.

KJ3A 5782/6406 220.9 KJ3S 3011/336

KJ4A 6817/8194 99.5. KJ4S, 267 2917,

011

KJ5A 5666/6304 138.7 KJ5$ 2547/2678

KJ6A 6012/6762 '245.4 KJ6S 2601/2918

KJTA 5786/6616 198.0. KJ7S 3532/4842

KJ8A 6051/6916 233.7 KJ8S 3134/3814
3
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129.0

164.9

164.1

/261t8,

77.5

25.3

96.77
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Table

0

a

.0

.

KJ9A. 4244/4624

KJ10A 5609/6108
4.

194.6

173.8"

KJ9S

KJ10S
-

f

2796/3146

3068/3494
u?

.

153.9

157.9

KJ11A 5,72/6206 -. .

4N .'

KJ12A 5797/65)21

.

.

JM1B 2202/2561 0 163.3 CH1B 4000/5146 316.7

CJ2B 1268/1383 365.2 CH2B/ 3038/4163 .130.9
, .

CJ3B 1474/160 .,.396.1 CH3B 2365/3297 119.4

. .

CJ4B60 1436/f564 386.7
, .

' 614B 2563/3482 127.2

CJ5B .:,151/1221 285.0 CH5.B1 '2856/3799 123.1

'CJ6B A307/1381 293.6 CH6B 35644981 124.7

CJ7B 1128/1206 287:8 CH/B 2663/365B 65.9

CJ813 1258/1361 258.6 ,

CJ9B 1301/1395 252.9

.CJ10B 1175/1261 292.7

CJ11B 999/1095 235.3'

.

CJ12B 1123/1196 285.1
47

13B 952/1045 306.8

JUO1B on 2670/3427 82.5 JUO6B 2024/27'10 40.9

JUO2B #2442/3228 12.0 ,JUO7B 2368/3149 42.6

0 JUO3B 2190/28 48:8

.

JUO8B 2498/3420 37.3

JU04B 2305/2894 ., 50.8 ° JUO9B 209/3494 34.1

JUO5B 2383/3091 . 44.4 451.110B 2251/2890' 38.3

J

9

a.
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Table

_ 1 ,

4r -Chi-square Test of Coavolution of TWA Exponentials
.

with 19 Degrees df Freedom ,g;.,,
1 .1.' r ,

JF2A

`JF3A

JF4A

(k101)

1.796

1.396

qc948

A2

3.300

3.576

3.540

JF5A 1.551 3.837

JF6A 1.796 3.686.

JF7A 1.796 4.371

JF8A 1.710 3.723

JF9A 1.886 3.723

JF10A 2.t83 ' 4.503

JF11"A 1.474 -3.300

JF12A 1.886 -3,333

KJ1A 2.925 2.954

KJ2A 2.407 2.984

KJ3A 2.47 '3.435

KJ4A 3.556 . 4.593

KJ5A ,2.527 ; 3.540
t .

/

elfJ6A 1,925 3.915

KJ7A . 2.527 4.327 ,"

KJ8A" '2.786_ 4.200

2

X Ad

(X1

JF1S 0.950

758.7 JF2S 0.853

997.7 JF3S 0.69

761.1 JF4S .0.853

541.8 JF5S 0.810
-

866.1 'JF6S, 0:774

270.8 JF7S 0.857

-tc4

748.0 JF8S 0.810 ,

967.4 JF9S 0.900

480.9 3F1OS 0.857

1312.0

1614.0

228.6

41-
172.8. KJ2S '1.216

269.9 KJ3S 1.340

112.1 ' KJ4S 1.047

195.4 KJ5S 0.990

307.1 KJ6S 1.158

i
260.4 KJ7S 2.401

292.3 KJ8S 1.544

5

6

r

4

A2
2 \

* 3.612 592.0

3.612 65212"
t.

3.576 557.5 ,.

3.333 525.0

3.470 578.5

3.540' 397.7

3.435 417.3

3.367 488.2 /1"

3.686 239.2

4.116 170.6

j

3.954 191.0

4.242 224.4

3.760 250.4

\

. 3.076 400.5

3.876 112.6,

7.706 58.8

5.494 1060.
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A

a

Table 9, Continued

KJ9A 1.886 3.107 256.1 ,KJ9f 1.15.8 4.116 198.4

KJiOA 2,292 3.107 230.6 RHOS 1.407 4.200 190.8

KJ11A 2.653 3.576 191.8

KJ12A 2.786 3.686 181.7

r

JN1B,/1.050 4.876 186.7 CH1B 2.292 6.379 361.4

CJ2B 0.463 3-686 419.1 CH2B 1.698 7 Q46 :199.5

CJ3B 0.569 4.116 491.4 CH3B 1.397 6.977 204.7

CAB 0.569 4.200, 674.6, CH4B 1.463 6.907 154.0.

CJ5B 0.359 ' 392.7 CH5B 1.524 6.704 181.9

CJ68 0.418 '.3.845 407.6 . CH6B 2.281 7.117 238.8

CJ7B 0.418 3.935 395.4 CH7B- 1.524 - 7.046 144.0

.0J88 0.463 4.116 349.3

CJ9B 0.488 3.744 346.4

CJIOB 0.440 4.021 383.9

)0J11B 0.397 4.126 289.2

CJ1241 0.397 4l008 38.6.3

CJ13B 0.341 3.994 338.7
.C.

_

JU018 1:397 6.009 ,103-9 JUO6B 1.050 6.545 53.2

JU028 1.333' 6.572 79.4 r JU07B. 1.216 0209 82.4
A

A JU038 1.103 : 6.365 87.2 JUO8B .407 6.790 77.6

JUO4B 1.209 5.718 80.6 JU098 1.407 5.352 -44.8

JU058 1.276 6.260 64.5 JU108 1 r403 . 5.426 71.2

4
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Table 10 the %sults for the gamma,model,with again, the two parameters

,y and p estimated by maximum likelihood. Evidently the gamma, distribution

fits the data much better than the convolution of two exponenti.ils.

110

4/J

Inclusion of sar.4.7de time. Fourth, a question arose as to whether

or not the length of the fixation should include the temporal length of the
. °

.

saccade immediately preceding it. It' was thought' that possibly the

nonexponentiality was due to the exclusion of that time. However, when the

time of the previous saccade was adjoined in the analysis of a few of the

sessions, the only effect was-a further departure from exponentiality as

seen in the histograms.

3.1.4 Effects of. Structural Features

AGiven the departure from an exponential distribution of fixation

durations, it is interesting to investigate further how to model the ways

the distribution departs from the exponential. One way to accomplish this is
,ee

to determine the effect of certain structural feature§, if any on the

1

distribution of the fixation durations. To do this we regressed the fixation

duratjori on the following variables:

1) ROW - the row the fixatroh is in,

2) COL - the column the fixation le iu,

I
0-

3) LENGTH - the number of igits in the'toptkow,

4) ONOFF - an indicator in subtraction of whether a-- borrow

was needed from the next column, and addition

of whether a carry was gi,en to that Column from the

preirious one.

ki0
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Table 10

Chi-square Test of the Gamma Distribution

,with 19 Degrees of Freedom

File- ? p X 2

.

JF2A 4.491 1:347 343.6

. .

JF3A 5.285 1.478 404.7

JF4A '5.918 1.691 . 222.6

JF5A .4.913 1.277 067.7

JF6A 5.463 1.476 367.3

4.356 1.008 264.2

JF&A 5.296 1.407 559.9

JF9A 5.506 1.473 394.3

' JF1OA 4....794 1.060 402.2

JF11A 4.562 1.389 857.0

Ji12A..5.197 1.573, 709.5

KJIA 3.189 1.061 179.1

1CJ2A , 3.280 1.078 117.2

KJ3A 3.750 1.081 188.1
. .

KJ4A 4.706 1.010 113.5

KJ5A 3.808 1.066 137.7

KJ6A 4.296 1.086 209.8

KJ7A 4.908 1.129 134.4

KJ8A 4.473 1.060 222-6

KJ9A 3.631 1.158 143.1

,

File y

JF1S 5.976

JF2S 6.290
,

JF3S' 6.089

JF4S 5.209

JF5S 5.862

JF6S 5.109

JF7S 4.807

p

1.662

1.735

1.723

1-566

1.684

1.455

1.385

JF8S.v_,5'.237 1.561

JF9S 4.566

JF1OS 4.631

KJ2S 4.913

OS 4.917

1.239

1.124

AO
KJ4S ,Z.881 ' 1.356

KJ5S 4.118
J

KJ6S 4.238

KJ7S 7.741

KJ8S 5.556

iiJ9S 4t743

5

1.341

1.090

1.000

1.002

1.139

X
2

. 183.8

132.2

148.7

/ 190.1

151.6 -

141.0

194.1

165.6

131.8

121.5

.2'

89.8
1

116.6

119.8

210.5

70-9

. 59.8
't

105.7

128.1
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Table 10, continued

KJ10A 3.557 1.140 115.4

KJ11A 3.862 1.069 132.2

KJ12A 3.821 1.023 161.6

JM1B 5.009 1.022 '174.6
o

CJ2B 5.536 1.492 246.7

CJ3B 6.257 1.524 242.4

'CAR 6.217 4.487 266.5

CJ58 7.271 1.846 129.6

CJ6B 6.300 1.750 141.9

CJ7B 6.300 1.600 178.5

CJ8B 6.200 1.500 164.4

CJ9B 5.700 1.510 159.5 '

CJ1OB 6.000 1.500 178.3

CJ11B 5.900 1.370 169.6

CJ12B 6.500 1.630 158.2 '

CJ13B 6.237 1.55 181.7

JUOLB 6.019 1.003 1041,3

JUO2B 6.570 1.000 80.0

i .'
JU038 6.368 1.006 90.2 .

JU048 .5.716. 1.005 ,81.0

JU058 .6%312 1,004 6&.0

r

KJ108 4.498 1.060 1 62.4

pH1B ,61.380 1.006. 359. 6

CH2B
>

7.070 1.002
1

201.4

CH3B' 7.074 1.010 119.4

CH4B % 6.965 1.000 154.9

CH5B 6.790 1.008 184.4'
P

CH6B 7.086 , 1.000 240.4:

CH7B 7.067 1.006 148.7

...,

"......!.-Q

.s.
.,

or

JU068 6.586 1.002 54.1
. t.

JU07B 6.177 1.000 82.9

JUO8B 6.832 1.000 79:0

J1J098 5.337 1.006 45.1

JU108 5.394 1.000 71.5

G 0

4'
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The regression equation therefore was

y = a + a LENC-T11--+--aPAT,..,4=-4--aGaiUMN----4---a ONOFF

i 0 1 i 2 i 3 i 4

where y denotes the fixatiOn duration of the ith data point.

i
Ttle results of these, regressions are shown in Table 11. An asterisk

denotes a nonsignificant coefficient at thek97.5% level (onesided ttest)

We can see the folloWingpoints from an inspection of Table 11

First, as the number of the row the subject is in increases, the fixation
00.

duration also increases, for the coefficient is almost uniformly positive.

Singe correlat:Lof the variables ,involved is snall,e may be_Inclined

to surmise that the subject lingers more,further down the column. This may

have to do with the. fact that the numbers added are now much larger-.- This

effect is stronger in addition exercises than in subtraction exercises,

which is not surprising since there are only two rows of digits in

subtraction. Column and length are often nonsignificant and change sign

with subject. Little more of a concrete nature can be determined. Finally,

onoff for subtraction, which is borrowing, has a clear positive effect on

fixation duration, which might be guessed considering that bor wing maybe

the most difficult algorithmic step in subtraction (indeed in all the

exercises we presented to subjects).

As would be expected from the size of the'various coefficients, the

regression on the structural variables accounts for only a relatively small

part of the variation in the fixation durations--the range of the square of

the multiple correlation (R2) is 000324 to .c9123. These results stand

41

in contrast to the regression of Kespohse and latency data on the same

structura variables where R
2
s of -70 or greater are common (for extensive

'analyses, see Suppes & Morningstar, 1972).
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Table 11

ReirremstmertortfitMllt of some. structural

Variables for Fixation Durations

JF2A JF3A JF4A JF5A

row- .031 .034 030

column .019 .006 *

length -.018 -.016-.011

onoff -.037 -.033 *

JUlA KJ2A KJ3A

row .025 -015 ..015

column -.022 -.020 -.021

length .012 .011 .019

'onoff A .030 .025

-037

-.016

KJ4A

005

-.028

017

020

JF6A

.033

-.010

JF7A

.022

4'

-.037

JF8A

-031

-.022

JF9A JF10A MIA JF12A

-024 .014 .042 .028

* , * .009

-.012 -.019 -.031 -.012

* *

Tj5A KJ6A KJ7A KJ8A KJ9A' KJ10A KJ11A KJ12A,

.017 .012 :-015 .017 .027 .009 .021 .:019

-.021 -.008 7.015 -.012 -.032 -.015 -.D13 -.019

.015 .030 .011 .017 .008 .008 -.030

* 1026 .030 .035 .042 .056 .029 -023

JF1S JF2S, JF3S JF4S JF5S JF6S JF7S ..1178§

row .032 :033 .025 .046 .035 .034 039 =033.

column .012 * .020 .013 .015 * .016 *

length -.023 * --.028 -.009 * * -.017

onoff .031 -028 .025 .044 * * * *

KJ2S KJ3S KJ4S KJ5S KJ6S KJ7S KJ8S KJ9S

row .022 .023 .018 .011 .009 .013 .016 .019

column * * * -.015 -..025 -008 * -.013

length * .015 .013 *

onoff .042 .047 ,.058'",064 ,016 .020 .034.

JF9S JFIOS

-033 .016

* .013

* -.030

.026 .026

KJ1OS

.014

.025

.055

rt



Table 11, continued

row

column

4. length

onoff

row

column

length

onoff

0

.iM1B

.007

CH1B

006

CH2B

*

CH3B

-.006

CH4e

*

CH5B

-.003

CH6B

=7005

CH7B

-.004

CJ2B CJ3B

*

* -.007 -.006 * .005 * -.067 -.008 *
A

*

* * * ;* ' * * -.014 * -..020 *

* * .015 .011 .023 * * .013 * *

CJ4B CJ5B CJ6B CJ7B CJ8B CJ9B CJ10B CJ11B CJ12B CJ13B

* '-.007 *' * * * * * -.011
410,

* * * .015 .012 * * * .018

* * * -.022 -.020 * * * * -.033
,

* .048 .027 027 045 .029 * * * *

JUO1B JUO2B.J1103B JUO4B JUO5B JUO6B JUO7B JUO8B JUO9B JU1OB

row .012 .014 .014 017

column * *

length .010 * 018

onoff * .019

.67

.016 .013 .015 .020 .024 .023

-.008 * -.b08 -.007 -.011 -.011

* * .022 .012 .018

.024 * * * .023

of



63

3.1.5 Mixture Distribution

-------
After investigation of the many different aspects of the distribution

of fixation durations described aboVe, for reasons given in the theoretical

discussion we fitted the mixture distribution with three parameters. The

'results of this 'analysis are shown in Table'12. As previously, the results

are given for individual 'sessions. The first column shows the estimated

parameter of the exponential distribution and the second, the estimated

parameter of the convolution of two exponential distributions. The third

column shows the mixture weighting a on the exponential distribution. It

should be noted that if tilt convolution of two exponential/distributions

with the parameter --A2 is the same exponential distribution as estimated

in column 2, then the coefficient for A
2

should be onehalf that for

Al: qn the fourth column we show the chisquare fit of the mixture

distribution, which has one mole parameter than the gamma distribution, and

we might expect somewhat better fit. It is evident from comparison of

Table 10 and Table 12 that the mixture distribution actually fits very much

better than the gamma distribution for almost all sessions, and for only

one of the 72 sessions analyzed is the gamma distribution actually better

(session JUO9B), and then only very slightly.

In the fifth column of Table 12 we give the estimate of the average,

error statistic for the mixture model. In this case the average error is

the square root of the sum over cells of the squared difference between the

true and predicted_probability-of an arbitrary fixation duration being.

within the cell, divided by the predicted probability. The maximum

likelihood estimate' of the average error is computed frowthe Chisquare

statistic by the following equation, where x
2 Is the Chisquare statistic,

64
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Table*12

/-- 61-square and Average rfiTiE- a s cs or a tureof

Exponential and Convolution of Exponentials Model with

Al

JF2A .302

JF3A .pilf

JF4A .343

JF5A .277

A2

..."

.151

.130

137

.126

..11;'6A. ./97 .131

JF7 229 .115

JF8A ..288 .129

JF9A ".294 130

JFIOA .211 .116

JF11A .368 -.136

JF12A .386 .140

JFIS .275 .140

JF2S .256 .143

JF3S .351 .135

JF4S .393 .1'14

jF5S' .332 .139

JF6S .308 .136A

JF7S .330 .135

. 18 Degrees of Freedom

a
2
X

Average

error

.33 194.1 .194

.27 269.3 .232

17 167.3 220

.38 141.8 .178

.29 257.0 235

.66 -124.6 .153

32 187.9 196

.29 270.7 230

.57 1&7.7 .172
j.

.33.. 675.7 382

.18 535.9 324

.19 136.2 .241

.12 57.6 .135

.14 , 111.4 .203

.22 123.8 .204

.17 11119' .197

.28 88.7 .176

.32 122.2 .213

(
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Table 12, continued

.65 t

JF8,S .343 .144 .22 114.4 .210

JF9S .296 .126 .48 80.0. .162

JF1OS .179 .152 .48 83.3 .170

KJ1A :353 .149 .74 117.5 .117

KJ2A .349 .1A7 .71 65.8 .095

KJ3A .292 .146 .66 ,98.3 .113

KJ4A .192 .188 .86 106.8 .105

_KJ5A .293 ,1$2 .69 61.3 .085

KJ6A .235 .143 .61 90.7 .105

KJ7A .212 .131 .61 46.4 .068

KJ8A .203 -144 .58 73.1 .091

KJ9A .336 .151 .59 83 fy .121

KJ16A .338 .147 .64 64.0 .089

KJ11A .288 .129 .70 66.8 .091

KJ12A .286 .111 .15 80.3 .099

KJ2S .253 '.126 .55 55.6 .112.

KJ3S .237 .118 .53 57.8 .112

KJ4S .242 .143 .45 .91.0 .160

KJ5S .389 .142 .37 143.5 .218

KJ6S .268 .119 .66 34.3 .082

KJ7S .074 .110 .62 58.9 .094

KJ8S. .126 .137 ,62 74.5 .124

KJ9S .243 .121 >62 88.2 .151

KJ10S .258 .100 .68 104.6. %159



Table'12, continued

JM113 .185 ' .117

CJ2B ".200 .145

CJ3B .158 .132

CJ4B .155 .130

CJ5$.- .165 .133

CJ6B .175 .135

CJ7B .149 .137

CJ8B .203 .126

CJ9B .237 .139

CJ1OB .189 .129

CJ11B .192 .131

CJ12B .205 .130

CJ13B .166 .136

CHO1B .112 .114

CH02B, .087 .116

CHO3B .018 .096

CHO4B .089 .117

CHO5B .089 .115

CHO6B .081 .120

CHO7B .023 .096

/1.1U01B .111 .128

JUO2B '.092 A6

JU038 .093 .134

.60 84.7 .164

.24 196.7 .361

.19 174-0 .313

.19 206.2 .348'

.11 108.6 .275

.13 111.6 .263

.14 134.1 .312

.24 115.6 .270 .

.25 107.8 .256

.19 120.9 .288

.28 113.7 .298

.17 121.8

.20 137.3 .340

.61 291.9 .231

.61 190.3 .204

.2.7 49.8 .102

.62 152.5 .198

.57 . 172.2 .202

.62 223.2 '.204

.28 54.2 .103

.62 91.7 .148

.62 78.4 .139

.62 81.9 .151

1
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Table 12, continued

69.-6JUO4B

JUO5B .100 .130 -63 ,63.5

JUO6B .093 .126 .62 48.7

JU07B :091 .141 .63 .71.8

AJOBB .077 *39 .64 34.8

JUO9B ,.122 .148 -.63 .45.7

JU10B .109 .162 .65 61.6

O

6L'

.r36

.124

.111

.133 .

.076

.093

.126

c-7
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k' the degrees of freedom, and N the sample size:

....NS
,

.... 2 .(k - 1)',
2..,

1/2

.. e-= ((x2 - --:..-7-- )41,1)2 ] - ,
,

Ns, ' ,9

. " :-.
r -

The average error is a good measure of how well a model is fitting,
,

r

whenie:square test would reject the model,. because the Chi-square test
.

.
-

r
P sets ever more stringent criteria on the average discrepancy as the ple

i".

(

ORO

size goes up (see, Kfaemer, 1965).

We see in Table 12 that the fit as indicated by average error is

not too bad. Although the adult average error ranges between 7 and
.

.

.
.,

peftent, in 30 out oft 42 cases. it is below 20 percent. The children's fit-

.
. .,

is not as gqqd., with a range of 8 to 36 percent,.and only 14 out of 30
1 .

sessions uhder 20 percent. Still, almost all the problems oyit-for the

children are with subject CJ, for whom the mixture.model is clearly less

adequate than it is for all the othersubjeots-

3.2 Random-walk-Model of Movement Direction

. 3.2.1 Fit to register-machine mOdel. .

The next proces.of interest was that of the sequential grid
a

positions attended to by the subjects, ie.,.the grid scanpath. In order

to determine the degree -of fit of/the scanpaths to the register-machine

model it was necessari to create some measdees of goodness-of-fit. Since

thve seem to be no close precedents to help guide us, inevitably the
,.1-.. ,

-*
3,

m. ea
.

sures that we developed are to some extent ad hoc---
', ..

The firee measure A denoted corrl, and is const-ructedas follows-
.

;

*The theoretical scanpath for the register-machine model was simplified for

this analysis. 'A perfect scan-path in tdrns of this model was defined to

be moving top7to-bottom in each-column with the fixation in the bottom Of a
k

column being immediately succeeded by a'fixation in the first row of the

,-..
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coluMn immediately td:the Aft. This sequence begins. in, the upper right
we

grid positipn A fourbyfour exercise is shown below with its properY.
.

scanpatirto the tight,

3 6 7 7 * (25) (19) (13) (7) (1)

2 9% 0 3 * (26) (20) (14) (8) (2)
*

3 5 5 j * (27) (21) (15) (9) "(3)

4 4 - 0 8 * (28) (22) (16) (10) (4)

" * (29) (23) (17) (11) (5)
4

* (30) (24) (18) (12) (6)

V , _,1

Similar correspondences can of course be constrited for exercised

of other confighratio In accordance with the registermachine model for

addition we denote the d4.Fation'of the fixation at time as "gOod" When the

ition p of a fixation at time t is either p 1, i.e.,
t tc1 , t-1

staying put in the same grid, p , or advancing one square, p + 1;
t-1 t-1

otherwise we denote the time,"bSd". (The analysis i lightly pliffsprent

for subtraction.) The stati sticis simply the ratio of the "gooe time
4

to the over 11 time. This measure is in a sense optimistic since a. large

fraction the fixations are at the same grid -position as th e-previous

fixation, partly due to the tight fixation parameters used in,the data
0

reduction.
11(

Because we would not-claim,that the scan paths nearly agreed with

those,predicted for the regiitermachine model if 90% of the fixation

positions were 'repeats and_the other 101 appeared to be independent of-the

moldel; we constructed corr2. The only difference between corrl and corr2

A iee

I
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is that repeat time is not counted as "good" or "bad" time in the

determination of coxr2. For this reason corr2' is pessimistic in that some

repeating should:be included in,"good" time.

Covr3 is a third measure of goodness-of-fit for scan pats., To
C

compute this measure first determine how'many fixation positions, say n,

.

occurred or a particular
0-

exercise. Then two sequences are created. The

sequence 1,...,n a &the sequence of grid positions predicted by the
.6

register-machine model,.as indicated above. Then the correlation of these

two sequences is calcdlated. -This-is_Corr3. The statistic is then averaged

across the exercises for an entire session) :Corr3 is probably slightly

pessilliftic in that it should really be caPculated as the maximum

.corielation-between,the sequence of grid p-ositions and any monotonic
. .

transformation of the sequence (1,...,n), since this would naturally allow

for r4petition.

We point out that the measures all increased with the length

of the exercise, most notably corr2 on addition sessions. Our analysis

allowed for the underline position to be analyzed as a separate location or

joined to the answer position ibmediately below. The analyskIshown in

Table 0 corresponds to the Separation of the underline but the alternative

seems reasonable as well.

In the case of addition, the average of corrl and:coii"<ems to be

a reasonable estimate of giodness-of The fit as measured by corrl for

the two adult subjects is quite good. For subtraction the measures are so

di;karate it is difficult to say anything with assurance. he fitas

measured by corr3 is surprisingly good for almost ri sessions, but we

believe that it is not model - specific enough.for tie main theoretical
10

framework of'our analysis.

fr.
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KJ1A

corrl .872

corr2 .594

corr3 .908

JF2A

corrl .787

Table 13

Three Measures, of Fit of them Scanpaths

KJ2A

.871

.619

.862

JF3A

.817

Tr2 .495 510

eorr3 .857 .857

KJ2S KJ3S

corrl .742 .716

corr2 .298 .326

./
corilL .672 .745

JF1S JF2S

corrl .715 .702

corr2 .298 .312

corr3 .765 .767

JM1B 'CH1B

corrl

corr2

corr3.

corrl

corr.2

corr3

.594 .71,14

.260 .280

.735 .681

CJ413. C.15.13

.434 .445

:151 .142

.646 '05.66

to the Register-machine Model

KJ3A KJ4A KJ5A KJ6A KJ7A KJ8A KJ9A KJ10A KJ11A KJ12A

.891 .793 .892 .904 .899 .894 .858 .879. .890 .896

.632 .388 .633 .650 16 .670 .658 .633 653 .645

.864 .843 .828 .853 .785 .798 .791 829 825 .814

JF4A JF5A JF6A JF7A JF8A JF9A: JF1OA JF11A JF12A

.791 .812 :841 .810 .818 .829 .841 .841 .824

.475 .511 .562 .494 ..506 .535 .505 .552 .518

.869 839> .903 .852 .906- .902 .866 .887 .874

KJ4S 05S KJ6S KJ7S KJ8S KJ9S KJ10S

.760 .698 .761 .830 .777 .745 .744

.352 .265 .314 .290 .270 .280 .314

.728 .741 .739 .715 ,.728 .742 -744

JF3S JF4S JF5S JF6S JF7S JFSS JF9S JF1OS

:675 .735 -712 .720 .708 .68.7
6
.734 .640

.270 .297 .297 .301 .275 .283 .287 .223

.794 /89 -769' .741 .732' .768 .821 .778-

CH2R/CH3B rCH4B CH5B"CH6B CH7B CJ2B CJ3B

.744 .735 .725 .682 .733 .716 .516 .482

:317 .298 .323 .292 .286 .294 193 .214

.755 .717 1698 ..689 .680 0.687 .695 .686.

CJ6B CJ7B CJ$B CJ9B CJ108 CJ11B CJ12B CJ13B

.435 .411 .461 .497 .473 .472 .471 .442

.150 .137 .170 .193 .171 .189 '.195 .145

.648 .656 .684 .755 762 .777 .802 .794



,

,
Table 13, continued

1.,

. 7-2

t

JUO1B JUO2B JUO3B JUO4B JUO5B JUO6B JUO7B JUO8B JUO9B JUlOB

cor1r1' .622: .595 .608 .627 :641 .622 .669 .673 .598 1.616

r-----,, corr2. .155 ".132 .154 .192 .223 .155 .191 .134 .143 .165

corr3 .601 .572 .581 .650 :583 .578 .608 .536 .561 .563

.,

r

N

a

..

e". 1

I

73



73

3.2.2 Fit of random -walk model.

We turn now to the random-walk model already described by the

qualitative axioms formulatedin the heoretical section. The first and

most common type of eye movement is stay, i.e. , staying put in the same
ik

grid position. The second type of movement is moving forward according to

0

the register- machint model. The third general motion is backtracking,

i.e., the movement back to a position already occupied in the same column.

We divide it into three kinds with relative frequency data for all three

shown in Table 14. In particular, bktrckl, is the relative frequency of the

backtrack from the second row to the top row. The motion labeled bktrck2 is a

motion back to the top of the column but with two or more steps. Finally,

bktrck3 is the motion from a row to the preceding row if the preceding row

is mot the top row. By breaking backtracking into these three mutually

exclusive categories we cover almost all lie cases and can have availableg`

the possibility of disentangling different kinds of motion. It might be

asked, how does bktrck 2 occur in Subtraction? It is to be remembered

that the symbol that is placed within the grid where the point of regard

is located is not always a digit; it can be an underline or an answer

blank instead of-one of the digits given In the exercise. The fourth

type is skip, which is the movement which would be egpected by the

register machine model for the fixation after the correct fixation under

study. Skipping in subtraction Deems more frequent in Table 14 than it

really is, because we counted motion from the second row to the answer

space without stopping at the underline symbol as cases of skipping.

Finally the fifth type of motion, other,' includes all other movements not

previously classified. The relative frequencies of these movements for

various sessions and subjects are shown in Table 14.
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TAble 14

AliRelative Frequency Data the Random-walk

Model with Five Possible Moveftents

KJ1 KJ2A KJ3A KJ4A KJ5A KJ6A KJ7A KJ8A KJ9A KJ10A KJ11A KJ12A

stay .673 .644 .688 .643 .687 .712 .704 .682 .583 .650 .665 .683

forward.152 .174 .1 .110 .173 -161 .169 .182 .234 .191 .179 173

bktrck1.017
44

bktrck2.009

.025

.005

.017

.005

.011

.005

.016

.005

.012

.003

.013,

.003

.012

.003

.021

.004

.019

.004

.019 .016

.006 .003

8

bktrck3.01f .012 .009 !008 .010 .007 .007 .020 .611 .014 .010 .009

skip .028 .043 .038 .028 .037 .035 .Q31 .027 .051 .032 .039 038

other .105 .097 .076 .195 .071 .068 .072 .070 .093 .089 .081 .076

JF2A JF3A JF4A Jr5A JF6A JF7A JF8A JF9A Jk F10A JF11A JF12A

stay .556 `.589 .545 .584 .582 .602 '.593 .598 .637 .569 -:583

/forward.220 .220 228 219 245 :.183 .201 .216 .186 .219 .222

bktrck1.028

bktrc2.019

.026

.009

025

016

-.028

.004

022

.007

...026

003

433

.006

.025

.04

.028

.004

.022

.010

' .030,

.004

bktrck3.023 .016 .022 .025 -016 .021 .025 .021 .024 .036 :031

skip .058 .055 .070 .056 .059 ..051 .060 '.059 .044 .064 .050

other .097 .085 094 .084 -.068 .113 '.081 .075 .077 .080 .079

KJ2S KJ3S KJ4S KJ5S KJ6S KJ7S Ks18S KJ9S KJ10-S
8

stay .589

forward.120

.618"

.124

.564

150

.516

.126

.580

141

.726

.686

.656

.094

.595

.109

.629

117

,

bktrck1.030 .030 .030 .065 .032 .024 .032 .044' .026

bktrck2.007 005 .009 .003 .005 .003 .004 .003 008

bktrck3.013 .015 .016 .016 .018 .011' 014 .014 .013

skip .077 .073 .082 .087 .073 .037 .050 .065 .061

other .164 135 .151 187 .152 .113 .150 .171 .145
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*Table 14, continued

4

'JF1S JF2S JF3S JF4S JF5S JF6S

stay .501 .461 .461 .522 .486 '.502

forward.180 ..201' .188 .187 .202 .197

bktrck1.039 .040 :045 .025 .028 .(122

bktrck2.011 .014 '.024 .012 ..015 .016

bktrck3.018 . .010' .008 .014 .013

8/7--a4-4skip .0 8 .103

other .163 .167

.101

.171

.101 .109

.145 .147-

.101

.150

JM1B CH1B CH2B CH3B. CH4B CH5B

stay .458 .599 .650 .631 .627 .573

forward .112 .097 .092 .092 .100 ..100-

bktrckl .052 .054 :056 .060 .056 .b58

bktrck2 .012 .017 .009 .006 :007 ''.007

bktrck3' .{371 .037' .028 .030 .025 .025

skip .014 .216
op

other .280 .174

.235

.141

.258 .270

.154 .159

.023

.214
./

,CJ4B CJ5B CJ6B CJ7B CJ8B CJ9B

shay .311 .319 .340 .309 .351 .376

forward .095 .106 .113 .100 .101 .1347

bktrckl .054 .048 .076 .076 .081 .077

bktrck2 .026 .032 .014 .015 .018 .013

bktrck3 .076 .063 .061 ..072 .060 .aqA

skip. 1.042 .038 .026 .031 .025 .016

Other .397 .394 ,.370 .397 .364 .310

JF7S JiliS JF9S JF1OS

.478 .454 .532

.190 .194 .168'

-.034 .036 ;025

.013 .013 .014

.019 .019 .018

.102 .1Q5 .100

.164 .179 .143

CH6B CH7B CJ2B

.652 .624 .360

.080 .094 .097

.036 .041 .070

.007 .005 .015.

.025 .032 .058

.022 .032 .047

.177 .1'71 .353

.475

.159

.041-

.009

.055

.180

CJ3B

.328

.115

.055

.040

.074

.043

.344

CJ1013.2-CJ11B CJ12B CJ13B

.359 .337 .349 .339

.100 .119 .112 .098

.081 .059 .076 .052

.020 .024 .020 .031

.089 :090 .071 .084

.026 .022 .015 .025

-326 .349 .357 .370
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Table 14, continued

JUO1B JUO2B JUO3B JUO4B JUO5B JUO6B107BJUO8B JUO9A JU1OB

stay ,.608- .612 .602 .595 .595 .586 .631 .657 .599 .601

forward .046 .042 .047 .054 .064 .046 ".055 .031 .045 .046

bktrckl .028 .027 .036 .036 .038 .038 .032 .025 .036' .045

bktrck2 .013 :006 .010 .019 .008 .005 .003 .003 .004 .003*

bktra3 .042 .048 .058 .059 .054 .045 .041 .034 .037 .042

skip .012 .010 .008 .010 .010 .010 .013, .007 .010 .010

other .251 .255 .240 .227 .230 .270 .226 .243 .270 .253
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It is also of interest to determine whether, or not the various

steps in the random-walk model have different fiXation durations associated

with them. Inspection of Table 15 re0eals no striking quantitative

differences. On the'other hand, for the two adult subject's (KJ and, JP)

the step bktrck2 has the minimum mean fixation duration in 32 of the 42

sessions and in 6 of 10 sessions for the younger student JU. For, the

other 20 sessions of the younger students '(JM, CH, and CJ) the step skip iq,

minimum in mean duration.

4 Discussion

The theory and data presented in this paper bear on a number of

issues and problems that are appropriate to consider in conclusion.

To begin with, what new sight or information do eye movements

3

give us about cognitive procedural models such as the register-machine

model considered in detail in this article? There are four points we would

t

make. First, the distributions of .fixation durations, which suggest a

nearly memoryless process, provide strong eviden e that 'essential aspects

of the information protedsing are stochastic in character. In this

connection, it is worth recalling that the best current theories of

k of Kolmogorov,randomness equate randomness with high comple4ty (the w

'and others), nd so to say that the processes, are stochastic is

to say that they are or gh complexity. This being the case, they almost

surely cannot even in principle be adequately represented in a deterministic

fashion.

Second, the data show'that even the well-trained subjects do not

follow the register-machine model in detail. From Table 14 we can see

that tbp only eye movements completely consistent with the register-machine
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Table 15

Avetage Fixation Durations for Different Step

in the RandOm-walk Model

JF2A 'JF3A JF4A JF5A JF6A

0

JF7A J*16.4 JF9A JF10A 'JFILA JF1-2A

stay .311 .292 .305 .270 .292 .236 .284 .283 .223_ .343 .326

forward .297 .253 .252 .246 :241 .239 .251 .255 .237 276 .267

bktrckl .278 .258 .270 .240 '.255 .234 . .258 .272 .212 :214 .291

bktrck2 080 102 .112 .127 .129 .204 .112 .132 .135 .112 .172

bktrck3..305 .266 .251 .232 .275 .205 4 .256 .281 .222 .247 .292

skip .304 .284 245 .320 .292 .257 .276 .269 :249' .238 .292

other 234 231 250 .200 .198 .169 202 .218 .171 .219 .242

KJ2S KJ3S KJ4S kJ5S KJ6S KJ7S KJ8S KJ9S KJ10S

stay .263

forwaid .271

.248

.244

.288

267

.361
.

.285

.283

.237

.133

.131

.187

.185

.258

.242

.255,

.229

bktrckI .217 231 .237 .40 270 .111 .200 .220 216

bktrck2 .154 .139 .138 .248 .140 :148 .109 .1'62

bktrck3 152 .148 162 .210 201 084 192 176 .169

skip .360,

other .174

.281.

.173

315

'.189

.375

.211

.297

.183

.196

.096

.240

.136

.303

.187

.275

.174

JF1S JF2S JF3S JF4S JP5S JF6S JF7S JF8S JF9S JF1OS

stay 311 .325 .313 .338 .327 .318 '.335 .338 .312 .261

forwar0 .246 .257 .232 .230 .226 .236 .247 265 .218 .218

bktrckl .277 .27Q. 331 .254 .274 .325
.

.247 .334 .296 .286

bktrck2'.190 .129 .145 .148 .123 .157 .139 .174 .123 .161

bktrck3 .259 .341, .354 .277 .307 245 .269 .287 .319 359

skip ,.273 286 .272 .303 .283 .277 .28D'-..280 .248`-.2'44
it

other .232 .238 .248 .270 .267 4.268 ..253 .260 .226 210
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Table 15, continued

KJ1A KJ2A KJ3A KJ4As KJ5A KJ6A KJ7A KJ8A KJ9A KJ10A KhlA KJ12A

stay .346 .344 '300 .232 .291 .260 230 .234 .317 t.333 .285 .281

forward .437 .426 .363 .301 .333 306 286 .299 .404 .379 .345 318

bktrckl .159 .228 176 .143 .198 .182 .139 148 .188 :209 .170 186

bktrck2 .120 .161 .138 .772 .111 .878
t,

150 .765 .115 .101 ,.712 .073

bktrck3 .238 .146 ':182 .133 195 .186 .135 .219 .148 .242 :173 .174

skip .389 .394 .348 .261 .315 265 289 .261 .403 .334.282 .306

other .205 158 .148 .181 .159. 128 .125 .142 .170 =201 .144 129'

JM1B CH1B CH2B CH3B CH4B CH5B CH6B CH7B CJ2B CJ313_

stay .196 .156 140 .152 .140 152 .147 151 .262 .231

forward .224 .147 .140

bktrckl .249 ..183 .186

',..139

.199

157

.194

.,159

.212

145 .143 .246 .255 ,

.208 .194 .326 .257

bktrck2 .197 .147 .143 .132 .127 .171 134 .142 .280 .239

bktrck3 ,188400r9 .154 .166 .168 .166 .125 .123 _.322 :267

skip .241 .106 102 .092 .098 100 .090 .083 242 .247

other .193 .139 119 .117 .124 .133 .133 .128 .255 .230

CJ4B .CJ5B CJ6B CJ7B CJ8B CJ9B C.7108 CJ11B CJ12B CJ13B

stay .227 281 .270 .236 226 .271 .247 242 .230 .232

forward .239 237 .248

bktrckl .278 .287'

.239

.301

.236

.291

254

.308

.258 .251 .259 .249,

.263 .363 276 .375

bktrck2 .190 .280 .218 .262 .242 .285 .218 .219 .222 .230

bktrck3 .266 .288 .358 .337 .303 .311 .283 .266 1.282 .257

_skip .217 .233 .225 .192 .214 172 .22$ .273 204 .268

other` .,241 .268 .263 ,255 .234 273 .254 .232 .248, .271
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Table 15, continued

JU018 JUO2B JUO3B JUO/AB JUO5B JUO6B JUO7R JUO8B JUO9B JUlOB

stay .153 .131 .141 .159 .144 .129 .144 .132 .159 .161

forward .183 .178 .169 .229 .205 .174 .196 .138 .177 .209

bktrckl .142 .149 .119 .159 .131 :190 .153 .151 .184 .182

bktrck2 .153 .111 .140 .130 .119 .112 .071 .133 .163 .171

bktrck3 .174 .200 .213 .195 .189 .190 .164 .204 .282 .185

wskIP .181 .177 216 .225 .247 .150 .169 .143 .148 .120

other .160 .146 .153. .173 .155 .152 .164 .132 .193 .168

N.,
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model are those of stay and forward. `Similar results aye also to be

found in the study of the correlation 'f the actual el'e-movement'Path and

the normative path of the register-machine motel. A deeper and more

difficult question is that of how the register-machine model should be

revised to produce a more sophisticated normative model- This kind of

question we arsahot able to pursue le any detail'within the framework of

data available to us in this article, but it is significant that we do not

really know whether the eye movements classified as other play an important

role in maintaining the efficiency of the subject as he moves from one

digit to another and from one'exercise to another: It is also not clea

to what extent skipping should be encouraged and hete again there is

undoubtedly a tradeoff between reliability. and speed, and the decision on

this tradeoff would depend on the purposes for which the algorithms were

being performed. The perfection of such a detailed normtdKi7re model is

probably not critical in the experimental area studied here, but the

concept of perfecting performance algorithms that involve in an essential

way eye movements is an important topic that seems to have received as yet

little attention except in studies of reading. Even in this area,

,quantitative normative models haves not beer4developed to any extent (See,

e.g.$ the five excellent articles on reading in Monty & Senders, 1976).

Third, the eye-moVemetit data:Lshow unequivocally that the Perceptual

component of the register-machine Model is far too simple. Undoubtedly,

if we were able to make the same kind of observations that we have made of

eye movements of .the internal processing, we would coieto the,same

conclusion about the cognitive procedural aspects of the modil as well ,

1
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Fourth, the revised and extended register-machine mO11 formulated

'e.

in- ter* of the qualitdtive a'3ioms given in the first part -of this article:

'do fit ehe data at atelativeicsatisfactory We believe that tote

'results are enCouraging enough tb, warrant further studies in the same

We now turn to o'me other conSide ations.- Ile is apparent, both

from theoretical and expedr /Niewpoin s, that more work is needed to

% t
I .4*

have an explicit identifica of steps the algorithm in relation to

,-!(
eye movements and'processing time. To get,such an identification, for

t

example to estimate the process .time and thk associatedgre movement with

.

e5ch indiiiidual step in the proposed algorithm, more specific model-
%

theoretic assumptions must be made. Especially from the standpoint of

processing time it is easy. to ma e such further assuOtions. .Steps in this

direction were already taken in Supper' (1973), but we are 'not 'yet satisfied

with how this,should,be done to incorporate eye mov6ments as well. It is

also apparent'that different highly spqcffic models scan be created, with'
,

different steps in detail, but fit. ds also .a.problem to conceptualize these
A

variants properly.

Another point is''that for problems and models of the kind studied

Afthis article it is too eAsy.to think of the computer serving as an
aw

ideal version of a human subject. 1.1-wdint to emphasize how muctrour own'
.

4.

:vie? is distinct from-that. The highly stochastic character of eye

1 "

tovem.cnts alone is at great variancefromany current computer concept -ions .

AL

of percep4on. Odr 'view, is rather that it ,would be useful to try to build
,

a computer edel that more closely, simulated what a hqman s ect deds),

.

. than eonversery-
_.t

4
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From another standpoint, it is important to investigatitz conceptually

different models fOr the ,processes we have studied here. An obvious and

direct criticism of the register-machine m461-- is, the use of coordinates and

the reference to grid locations. .It is 'apparent that in detail this*is not

a realistic way of discussing human perception but a mathematical convenience

that also must be regarded as a psychological fiction. What would be

appropriate and more interesting would be to incorporate a geometry'of

x- symbols in the wo-dimensional case and a geometry of objects in the,three-

P

.pdirqensional c se. The foundations of geometry in eithr o s instances

is as yet far from satisfactory, and consequently fundamental work,at a

geometrical level is also required in order to create what we think would be

sounder and more realistic models

It is characteristic pf the theoretical work we have pursued

in this article't many of the details of eye movemen have been ignored.

For example, we have made no study of velocities or acce ratiAns and it

is important to know what bette understanding of processirig algoritlifs ,r

would be gained from a better understanding and study of these phenomena.

Finally, in the same spirit we would reiLrk that our current conception of

the process of performing algorithms seems much too discrete. The basic

register-machine model is a discrete model and yet the process, from a

psychological standpoint, seems at a fundamental level to be more properly

continuous than discretel_ We have of course'converted the,register-machine
0

t

model into a continuous-time stochastic process, as for example in the

random-walk model, we have already considered, but the 'processipg,step9

A
remain discrete.' Whether or not these simple steps also need to be

replaced by a continuous version-remains to be seen.

12
4

o

I
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Appendix A

List Of Subject Trials

The following is a list of child-subjects who passed initial

screening for obvious features '(e.g. seriously drooping eyelids) that

would prevent the tracker from working. They*Were each brought to

Stanford for at least two sessions with the.eyetr;diing system. We

,list the months in which we worked with them, sex, grade, and the

disposition of%the sessions. All the eighthgraders were from the

11
RavenswooeSchool District, all the fifthgraders were from the Palo

6

Alto Unified School District, and the thirdgraders were childrrn of

IMSSS personnel:

November 1979:

M.U boy, third grade

0G girl, eighth grade

R.F. girl, eighth grade

C.H. .1 girly eighth grade

January 1980:

February Itrough May 1980:

Y.D. girl, eighth .grade

J.M. girl, eighth grade
. . ..N

. CJ.

C.J.

June 1980:

girl, eighth grade,

boy, third grade

July thrpugh. August 1980:

girl, eighth grades

boy, fifth grade
boy, fifth gradt,
boy, fifth grade

87

144,

couldn't. track

couldn't track
quit
dental infection I

couldn't'track
difficult to track,

1 session completed ,

difficult to track

qcouldn'L track

10 additional sessions
completed .

7 sessions completed
couldn't track .

10 sessions 'completed

r
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Appendix B

List of Arithmetic Struotures
.1

What follows is a description of the specifications defining the

20 types of children's exercises necessary for their generation. Note:

a,b,c are single digits; if leftmost then they are strictly geater than

zero. The number s
i

is thelsum of column i, not just the answer digit.

Type .1: a x

b x = 0, 2< s < 10
+ cc 1 2

s s

2

'type 2: a

+

5,

2

1.3,pe 3: a

+ b

s4
2

Type

1

x %,
b + 41,. .x

of. -4.--- 0 < s < 10,

s s 1

1 2 1

x

x

'0 < S < 1 < s < 10

s - 1 2

1

'x

+ x
7-- 911< s < 20,

1

1

x

0-< s <.10, 9 < s < 19

s 1 . 2

Type 5: a

°+ b

-------
s

2 1

4

< 10



1

t

7

Type 6:

it

Type 7: a' x
+ b x

01/0

s s
2 1

..

Type a: a
_

x
b x

0 1 0 , 1 1 M

/

s s
2 1

Type 9: , a x
+ b x--

s s
. 3 2

,
. Type 10: a x

b x
+ c

T.

Type 11: -a x
+ b xrf-

s s
3 2

type a . x
+ .13 x

.s s

t

1.6. 3

+
9 < s < 194 8 < s -< 19

1 2

9 < s < 20,
1

c

1 2

1

88

9 < s < 19, 1 <s
,

)

it

t

-- .-

x
x

9 < s <
s 1

1

a x
A , c
+ 13-.. x

19,

0-

0 < s <,2

c
a _,.x

+ b x

9, 9 < s _< 19
3

. --

or ----c--- or 9 < s < 28, 8 < s < 19
s s s s 1 . 2

1 2 1 2 1

,

x

-

la
x cs .

0* < s < 10, 9 <s -< 19, 8 < s < 19
s 1 . 2

1

x
x *.\

9 <s
.

-.s
<

1

19,- 8 < s
2

< 19, I <s
3

<9

.

r

1

..-

.



T:rpe 13:

.11

c
T

a
b

Ty?e 14: 1 a
b

f
g

Tyre 13: 1 a

Type. 16:

1 b g

c
-c-

Type.17: c
d

a f
g

Type 18:
16

a
b

. f
g

' Type 19: c a3' b g

Ty?e 2Q: c a f
3 b g

89

V

c > d 5 0, a >1.) >- 0

a > b > 0,

.a>b> 0,

f > g > 0

f > g > 0
r

d >I); 0 < a < b

_ . c >41 > ,* a > b > 0, f > P> 0

9

;a > b 0, 0 <f <g

c> 0 < a < b, f > g> 0
..

c > d > 0, 0 < a < b, 0 < f < g

4

yr

G
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Appendix C

Register-machine Models for Addition andSubtraction

4

We give in this appendix the full register-machine models for

f
general colAmn addition, i.e., for exercises having an arbitrary number

of rows and coldMns, and .also the fdll subt:raction model. For this

purpose, it is convenient to add to the instructions given at the

beginning Of the article the following four:

JUMP L: Jump to line labeled L.

END: Terminate processing of curent exercise.

PLUS ,(Reg-] r-Add 1-V5-tile- coffrents of register [Reg.].
. 1\

...w'

,

MINUS
.
(Reg.r: Subtract 1 from the contents of register (Reg].

The meaning of each of these four,additional instructions is apparent.. It

is obvious, that, for example, we do not from a formal standpoint need a

JUMP instruction: We can write the register-machine programs with the
I)

0

conditiOhalJUMP instruction' but it is convenient and simple to have the

unconditional instruction as well. We also need to extend the

nonelementary LbOKUPto include subtra'ction as well as addition. Tire

instruction is interpreted to subtract,-the contents of register (Reg2]

from the contents of (1141],and then store the result th [Regl]. These

facts include storing a minus sign with the result if the resin of the

subtraction is negative. ir

For the general case Of coluilm addition 'it'ib also convenient CO

have two-subroutines, one for vertical scanning of the left-hand side for

irregular rows--thatds, the exercise is not simply a rectangular array

with each row having exactly the same itumber.of columns-0e other for

outputting. These two subroutinware the fallowing:.

a



1. rdv

2.

3.
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V-SCAN SUBROUTINE

READIN*

JUMP(0 -9, -) SS,finv*

ATTEND(+1, -1)*

READIN*

JUMP(.-) SS,finv*

ATTEND(+0,+1)*

JUMP rdv*

8. fine EXIT*

) The OUTPUT subroutine is the following:

1 put

2.

3.

4.

5.

6. fino

OUTPUT SUBROUTINE

OUTRIGHT NSS*'

DELETERIGHT NSS*

AffEND(0,+1)*SS*

JUMP( ) NSS,fino*

JUMP put*

exit*

The full model for column additfbn is then.the following:

O

0

, 2.

3-

COLUMN ADDITION MODE,

. ,
ATTEND(1,1)

READIN

1 COPY SS in OP*

ATTEND(+1,+0)

READIN

6.' OPR LOOKUP'OP 4- SS
-

7- re.' .ATTEND (+4,0)

b3 I
.

0

99

4s.

7t.

fa,
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8. READIN

9.

10.

12.

13.

14.

15.

16.,

17.
.

# 18.

20.

21:

22.

23.

car

JIMP(0-9) SS,opr

JUMP( ) SS,rd

ATTEND(+1,0)

,OUTRIGHT OP

DELETERIGHT OP.

COPY OP in NSS

ATTEND(1,+1)

V-SCAN

JUMP(-) SS,fin

COPY NSS in OP*

JUMP opr

JUMP ( ) NSS,out*

ATTEND(+1,+1)

OUTPUT(NSS)

out END
/

Finally, the full subtraction model ils,fhe following:,
,

2

a

r



4 AL

'9. a
43

1

2

A

kcy SUBTRACTION MODEL

ATTEND(1,1) 2,4

READIN 25

READIN

JUMP( ) SS, fin

o.

COPY 0 in VSS. 26 ATTEND (+2;440)

4 COPY SS in, OP 27 OUTRIGHT SS

5 ATTEND (1 -1,+0) 28 DELETERIGHT SS

r
6 READIN 29 JUMP again

7 opr LOOKUP OP SS 30 bor 'JUMP (0) SS , over

8 ATTEND (+1 ,+0 )* 31 MINUS SS

9 OUTRIGHT QP

f

32 JUMP on

10: DELETERIGHT OP --- 33 over PLUS NS(S i,

i ,f.

11 ATTEND (1 , +1) -- a- 3/c. ATTEND(1,+1)

12

:
''---- READIN READ IN /

. , -.-- -,

13 JUMP( ) SS,fin 36
..

N rTURP (0) SS, over ..
1 ,t

14 JUMP( ) -OP , bor 37 ATTEND,( 1 , NSS)

r . : ,
15 on COPY SS in OP 38 READIN

16 ATTEND (+1 ,+0) 39 line 4PY SS in OP. . .

.!..

,
. cr.A . , .

17 READ IN 4L1 :, ATTEND (+1,+0)

0

.

18
..

JUMP( ) SS ,easy
\:....)

41 READ IN

19 JUMP opr
. _

42 COPY 9 in OP .,

t .
% , .

1)20 easy ATTEND (+1 ,+0) 43 JIJMP ( SS ,ea.sya
,

21 OUTRIGHT OP' 44
a..

LOOKUP OP 4 SS ''.1., '

, 22 DELETERIGHT 40P 45 ATTEND ( +1, +0) ,

23 again. ATTEND ( I;+1) 46 OUTRIGHT OP

1

A

94

02,
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47 DELETERIGHT OP 60 JUMP( ) SS,fift

48 MINUS NSS JUMP(0) NSS,outa
....10

/fell

.

49 . ATTEND (1,+1), / 62 JUMP(0) SS,linea

--N1,50 READIN -)s.
4

63 MINUSSS

51 JUMP(0) SS,line / 64 COPY 0 in NSS

' 52 MINUS SS 65 outa s'ATTEND(+2,+0)

.53 JUMP on OUTRIGHT SS

54 fin END . 67 DELETERIGHT SS
.

55 easya ATTEND(+1,+9) 68 JUMP againa
:

Stt OUTRIGHT OP 69 linea COPY 9 in OP

7 DELETERIGHT OP 70 ATTEND(+2,4-0)

s..

58 againa ATTEND(1,+1) 71 OUTRIGHT OP

59. READIN' k 72 DELETERIGHT OP

73 JUMP againa

We will now step through the subtraction model-with a specific

exercise so that the reader can obtain'more insight into how one of the

14141dels actually works. The exercise that will be performed is

The grid positions are 1073 1,4 1,3 1;2 1,1

82 2,2 2,1

3,4 3,3 1,2 3,1

Hopefully when we are done the contents of (3,1)will be 1, of

1073 -82.

(3,2) will

be 9, of (3,3) will be 9, and of (3,4) will be 0.

!*

.

We first ATTEND (1,1 . Then we read 3 into SS. We COPY 0:in NSS.

?
We COPY 3 into P. Then we ATTEND (41) which has a 2. We read 2 into SS.

1
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Next we LOOKUP'3 2. This places a 1 in OP. We now A (3,1) This s.

- has a blank. We now write 1 in the, grid position (3,1). Then we delle

the 1 in OP. Now we have finished the first column and are ready to move

to'-the second. We ATTI (1,2) which has a 7 and read the 7 into lin-
,.

Sinie SS is not blank we do not JUMP to line FIN. Since g does pot have

it we do not JUMP to line BOR. We OOPY 7 in to OP. We ATTEND (2,2)

and READIN the 8 int.0SS Since SS is not blank we do not go to line EASY. t

..., We JUMP to i*I0PR. We LOOKUP 7 8. This puts 9 in OP. Wenow
. .. ,, 4 4

-,

. ",

ATTEND(--( which is k- We write the rightmost character'of OP, which.

V% 0 4.is 9,,in ',2) T14 then d lete the 9, leaving in OR:.
J - k

The informatio out the borrow is preteetredas we move to the 0 :

. F- ; -,

yr,

O

next column- We ATTEND (1,3) which as a°0 in it, and 4,rela 0 into SS.

Since SS...iS not blank we.da not JUMP to FIN, and since} OP noes have-- in it
A

we jump to line BOR. We now enter 'the patt of'the subtaction algOrithm

-devoted to-borrowing. Since SS does have a 0 in it we JUMP 'to_line OSIER

whidlignifies,that-we cannot borrow yet since the column immediately to

the left 'has zero in it. We now add I to NSS, which will keep track o1 .

h w many colu shifts we have to make before finding a column With a

nonzep entry. We ATTEND (1,4) and READIN 1 into SS. Since SS is no
,% 40

----

longer zero we do not need to search any more and we are ready to continue

programming. We ATTEND (1,3)'and read 0 into SS. We COPY 0 into OP. We

1.

then ATTEND (2,3) and read the blank into SS. We COPY 9 in OP. Then wg

'VOL a blank in SS SID we JUMP to line EASYA. Lines EASY.and EASYA begin
I

two sections of the algorithm that correspond tom-the processes.needed to

complete a subtraction exercise when there are,no longer.any more digitsI
.

in the subtrahend. The section starting with line EASY7toiresponds to the
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case when we encounter this situation when we are not borrOwing, and EASYA,,

starts the' section when we are. We ATTEND (2,4) and write 9 at this

position. We delete the 9 in OP and AT F,ND (1,4). We read the 1 at (1,4)

into'SS and since SS is not blank we do not JUMP to line FIN. Since

neitherjSS nor NSShas-a zero in it we do no jumping and we reduce SS by

one to zero.' We COPY zero in NSS' We ATTEND (3,4) dnd write 0 in that

grid position. We delete the zero in SS so that SS now contains a blank.

We JUMP to line AGAINA. We ATTEND(1,5). We'READIN the -131,11k into SS.

Since SS is now blank we JUMP to FIN which ENDs the exetcise

L

N
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Appendix D

Professional Project Personnel

1. Dr. Patrick Suppes, Director, IMSSS. Principal Investigator.

2. Robert LaAdaga, Research Assistant,'IMSSS. Project:Director.

'3. Michael Cohen, Graduate Research Assistant, IMSSS And Department of
1

Statistic's.

4. Dr. James7'Anliker, Senior Research Associate, I'4SSS.

5. Robert Floyd, Senior Systems Programmer.
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C Appendix t

ego.

List of Lectures,

Lectures by Mr. Ladaaga:

Research qn Process Models of Basic Arithmetic Skills: Status Report.
National Science Foundation, NSF RISE Project Director's Conference,
Stanford University, Stanford, California, xxx 1978.

Process Models of Basic-Arithmetic Skills. National Institute' of

Education-National Science V6vndation Joint Program for Research on
Cognitive Process and the Strdcture of Knowledge in Science and Mathematics
NSF, 'November, 1979.

Lectures by Dr. Suipes:

September
7
1, 1979

September 4, 1979

Procedural Semantics. FourtItInternatianal
Wittgenstein Symposium, gircgberg, Austria

Data and Theory on Eye Movements in Performance of
Algorithms. E. L. Thorndike Award Lecture,
American Psychological Association, Ndw York City

October 11, 1979 . Some Reseach Issues in Computer-assisted /nstructi n.
1979.Award Lecture inhonor of S. Richard
Silverman. Central Institute for the Deaf,
St.Lotiks, Missouri

November IS, 1979,

August' 1,4, 1980'

.;
s.

Proceddal Semantics: Philosophical4and PSyChological
Aspects. Aix-en-Provence, France

A Procedural Approach Toward Mathematics
Education. ICME IV, University of California,
Berkeley '.
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